已知矩形ABCD,AB=2,BC=1,沿對(duì)角線BD將△ABC折起,使二面角C-BD-A為直二面角,則異面直線BD與AC所成角的余弦值為
 
分析:畫出圖形,作AF⊥BD,CE⊥BD,AG∥EF,AG=EF,連接CG,則∠CAG就是異面直線BD與AC所成角,解三角形求出結(jié)果即可.
解答:精英家教網(wǎng)解:如圖,作AF⊥BD,CE⊥BD,AG∥EF,AG=EF
連接CG,則∠CAG就是異面直線BD與AC所成角,
由題意,BD=
5
,AF=CE=
2
5
5
,
DF=BE=
5
5
,EF=
3
5
5

因?yàn)椋娼荂-BD-A為直二面角,所以,△CEG和△AGC都是直角三角形,
CG=
2
10
5
,AC=
(
3
5
5
)
2
+(
2
10
5
)
2
=
85
5

異面直線BD與AC所成角的余弦值:cos∠CAG=
3
5
5
85
5
=
3
17
17

故答案為:
3
17
17
點(diǎn)評(píng):本題考查異面直線及其所成的角,二面角及其度量,考查作圖能力,計(jì)算能力,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知矩形ABCD中,AB=2
2
,BC=1.以AB的中點(diǎn)O為原點(diǎn)建立如圖所示的平面直角坐標(biāo)系xoy.
(1)求以A,B為焦點(diǎn),且過(guò)C,D兩點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)P(0,2)的直線l與(1)中的橢圓交于M,N兩點(diǎn),是否存在直線l,使得以線段MN為直徑的圓恰好過(guò)原點(diǎn)?若存在,求出直線l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知矩形ABCD的頂點(diǎn)都在半徑為5的球O的球面上,且AB=6,BC=2
5
,則棱錐O-ABCD的側(cè)面積為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知矩形ABCD中,AB=
2
,AD=1,將△ABD沿BD折起,使點(diǎn)A在平面BCD內(nèi)的射影落在DC上.
(1)求證:平面ADC⊥平面BCD;
(2)求點(diǎn)C到平面ABD的距離;
(3)若E為BD中點(diǎn),求二面角B-AD-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知矩形ABCD,過(guò)A作SA⊥平面AC,再過(guò)A作AE⊥SB,交SB于E,過(guò)E作EF⊥SC交SC于F.

(1)求證:AF⊥SC;

(2)若平面AEF交SD于G,求證:AG⊥SD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知矩形ABCD中,A(-4,4)、D(5,7),中心E在第一象限內(nèi)且與y軸的距離為一個(gè)單位,動(dòng)點(diǎn)P(x,y)沿矩形一邊BC運(yùn)動(dòng),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案