【題目】已知函數(shù).
(1)判斷的奇偶性,并證明;
(2)用定義證明函數(shù)在上單調(diào)遞減;
(3)若,求的取值范圍.
【答案】(1)偶函數(shù);見解析(2)見解析(3)
【解析】
(1)因?yàn)?/span>中含有對數(shù),定義域需滿足真數(shù)大于0,求得定義域?yàn)?/span>,關(guān)于原點(diǎn)對稱,再表示,判斷其等于,為偶函數(shù);
(2)設(shè)任意,對作差,化簡后由真數(shù)大于1的對數(shù)大于0,得,即得證明;
(3)由(1)(2)可知是偶函數(shù)且在區(qū)間的單調(diào)遞減,由偶函數(shù)的性質(zhì)以及函數(shù)成立需滿足定義域從而構(gòu)建不等式組,解之得答案.
(1)因?yàn)?/span>,所以函數(shù)的定義域?yàn)?/span>,
因?yàn)?/span>,所以是偶函數(shù);
(2)任取且,
則,
因?yàn)?/span>且,所以,
所以,
即,所以在區(qū)間上單調(diào)遞減.
(3)因?yàn)?/span>是偶函數(shù),所以,
又因?yàn)?/span>定義域?yàn)?/span>,且在區(qū)間的單調(diào)遞減,
因?yàn)?/span>,所以,解之得
所以的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)對一塊邊長8米的正方形場地ABCD進(jìn)行改造,點(diǎn)E為線段BC的中點(diǎn),點(diǎn)F在線段CD或AD上(異于A,C),設(shè)(米),的面積記為(平方米),其余部分面積記為(平方米).
(1)當(dāng)(米)時(shí),求的值;
(2)求函數(shù)的最大值;
(3)該場地中部分改造費(fèi)用為(萬元),其余部分改造費(fèi)用為(萬元),記總的改造費(fèi)用為W(萬元),求W取最小值時(shí)x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).M是曲線上的動(dòng)點(diǎn),將線段OM繞O點(diǎn)順時(shí)針旋轉(zhuǎn)得到線段ON,設(shè)點(diǎn)N的軌跡為曲線.以坐標(biāo)原點(diǎn)O為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)在(1)的條件下,若射線與曲線分別交于A, B兩點(diǎn)(除極點(diǎn)外),且有定點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:在三棱錐中,,是直角三角形,,
,點(diǎn)分別為的中點(diǎn).
(1)求證:;
(2)求直線與平面所成角的大小;
(3)求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司的電子新產(chǎn)品未上市時(shí),原定每件售價(jià)100元,經(jīng)過市場調(diào)研發(fā)現(xiàn),該電子新產(chǎn)品市場潛力很大,該公司決定從第一周開始銷售時(shí),該電子產(chǎn)品每件售價(jià)比原定售價(jià)每周漲價(jià)4元,5周后開始保持120元的價(jià)格平穩(wěn)銷售,10周后由于市場競爭日益激烈,每周降價(jià)2元,直到15周結(jié)束,該產(chǎn)品不再銷售.
(Ⅰ)求售價(jià)(單位:元)與周次()之間的函數(shù)關(guān)系式;
(Ⅱ)若此電子產(chǎn)品的單件成本(單位:元)與周次之間的關(guān)系式為,,,試問:此電子產(chǎn)品第幾周的單件銷售利潤(銷售利潤售價(jià)成本)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面向量,滿足且,若對每一個(gè)確定的向量,記的最小值為,則當(dāng)變化時(shí),的最大值為( )
A.B.C.D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的偶函數(shù)和奇函數(shù),且.
(1)求函數(shù),的解析式;
(2)設(shè)函數(shù),記(,).探究是否存在正整數(shù),使得對任意的,不等式恒成立?若存在,求出所有滿足條件的正整數(shù)的值;若不存在,請說明理由.
參考結(jié)論:設(shè)均為常數(shù),函數(shù)的圖象關(guān)于點(diǎn)對稱的充要條件是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AOB是一塊半徑為r的扇形空地,.某單位計(jì)劃在空地上修建一個(gè)矩形的活動(dòng)場地OCDE及一矩形停車場EFGH,剩余的地方進(jìn)行綠化.若,設(shè)
(Ⅰ)記活動(dòng)場地與停車場占地總面積為,求的表達(dá)式;
(Ⅱ)當(dāng)為何值時(shí),可使活動(dòng)場地與停車場占地總面積最大.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com