若三角形的三個(gè)角成等差級(jí)數(shù),則其中有一個(gè)角一定是60°;若這樣的三角形的三邊又成等比級(jí)數(shù),則三個(gè)角都是60°,試證明之.
證①:設(shè)△ABC的三個(gè)角為A、B、C,由題意可得
B-A=C-B,
∴2B=A
但∵A+B+C=180°,
即3B=180°,B=60°.
證②:由(1)已知△ABC必有一個(gè)角為60°,今設(shè)∠B=60°.
∵△ABC的三邊a,b,c成等比級(jí)數(shù),
∴b2=ac.
又由余弦定理可得b2=a2+c2-2accosB,b2=a2+c2-2ac,
∴a2+c2-2ac=0,(a-c)2=0∴a=c.
∵∠B=60°,BA=BC,
∴∠A=∠C=60°
故△ABC為等邊三角形,即其三個(gè)內(nèi)角均為60°.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將正△ABC分割成n2(n≥2,n∈N)個(gè)全等的小正三 角形(圖1,圖2分別給出了n=2,3的情形),在每個(gè)三角形的頂點(diǎn)各放置一個(gè)數(shù),使位于△ABC的三邊及平行于某邊的任一直線上的數(shù)(當(dāng)數(shù)的個(gè)數(shù)不少于3時(shí))都分別依次成等差數(shù)列,若頂點(diǎn)A,B,C處的三個(gè)數(shù)互不相同且和為1,記所有頂點(diǎn)上的數(shù)之和為f(n),則有f(2)=2,f(3)=
 
…,f(n)=
 

精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在邊長(zhǎng)為a的正三角形的三個(gè)角處各剪去一個(gè)四邊形.這個(gè)四邊形是由兩個(gè)全等的直角三角形組成的,并且這三個(gè)四邊形也全等.如:若用剩下的部分折成一個(gè)無(wú)蓋的正三棱柱形容器,如圖(2),則當(dāng)容器的高為多少時(shí),可使這個(gè)容器的容積最大,并求出容積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在邊長(zhǎng)為a的正三角形的三個(gè)角處各剪去一個(gè)四邊形.這個(gè)四邊形是由兩個(gè)全等的直角三角形組成的,并且這三個(gè)四邊形也全等,如圖①.若用剩下的部分折成一個(gè)無(wú)蓋的正三棱柱形容器,如圖②.則當(dāng)容器的高為多少時(shí),可使這個(gè)容器的容積最大,并求出容積的最大值.

                        圖①                        圖②

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

將正△ABC分割成n2(n≥2,n∈N)個(gè)全等的小正三 角形(圖1,圖2分別給出了n=2,3的情形),在每個(gè)三角形的頂點(diǎn)各放置一個(gè)數(shù),使位于△ABC的三邊及平行于某邊的任一直線上的數(shù)(當(dāng)數(shù)的個(gè)數(shù)不少于3時(shí))都分別依次成等差數(shù)列,若頂點(diǎn)A,B,C處的三個(gè)數(shù)互不相同且和為1,記所有頂點(diǎn)上的數(shù)之和為f(n),則有f(2)=2,f(3)=________…,f(n)=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年上海市浦東新區(qū)建平中學(xué)高三(上)12月月考數(shù)學(xué)試卷(文理合卷)(解析版) 題型:填空題

將正△ABC分割成n2(n≥2,n∈N)個(gè)全等的小正三 角形(圖1,圖2分別給出了n=2,3的情形),在每個(gè)三角形的頂點(diǎn)各放置一個(gè)數(shù),使位于△ABC的三邊及平行于某邊的任一直線上的數(shù)(當(dāng)數(shù)的個(gè)數(shù)不少于3時(shí))都分別依次成等差數(shù)列,若頂點(diǎn)A,B,C處的三個(gè)數(shù)互不相同且和為1,記所有頂點(diǎn)上的數(shù)之和為f(n),則有f(2)=2,f(3)=    …,f(n)=   

查看答案和解析>>

同步練習(xí)冊(cè)答案