【題目】某企業(yè)生產(chǎn)AB兩種產(chǎn)品,根據(jù)市場調(diào)查,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的平方根成正比,其關(guān)系如圖2(注:單位是萬元).

圖1 圖2

1)若A、B兩種產(chǎn)品的利潤表示為投資的函數(shù)分別為、,求出它們的表達式并注明定義域;

(2)現(xiàn)企業(yè)有20萬元資金全部投入AB兩種產(chǎn)品的生產(chǎn),問:怎樣分配這20萬元資金,能使獲得的利潤最大,其最大利潤是多少萬元?

【答案】(1) ,;

(2) 當(dāng)有16萬元投入產(chǎn)品,4萬元投入產(chǎn)品時能使得利潤最大為12萬元.

【解析】

(1)由題可設(shè),再代入圖中的點進行計算即可.

(2)設(shè)有萬元投入產(chǎn)品,則有萬元投入產(chǎn)品.再表達出利潤的函數(shù),再分析函數(shù)的最值即可.

(1) 由題可設(shè),,,..

,

(2) 設(shè)有萬元投入產(chǎn)品,則有萬元投入產(chǎn)品.

則利潤.

.

故利潤.對稱軸為 .

,故當(dāng).

此時

故當(dāng)有16萬元投入產(chǎn)品,4萬元投入產(chǎn)品時能使得利潤最大為12萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的口袋中裝有大小、形狀完全相同的個小球,將它們分別編號為,,,…,,甲、乙、丙三人從口袋中依次各抽出個小球.甲說:我抽到了編號為的小球,乙說:我抽到了編號為的小球,丙說:我沒有抽到編號為的小球.已知甲、乙、丙三人抽到的個小球的編號之和都相等,且甲、乙、丙三人的說法都正確,則丙抽到的個小球的編號分別為________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若關(guān)于的方程有實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,側(cè)面與側(cè)面都是菱形,, .

(1)證明: ;

(2)若三棱柱的體積為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“微信運動”已成為當(dāng)下熱門的健身方式,小明的微信朋友圈內(nèi)也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

0~2000

2001~5000

5001~8000

8001~10000

1

2

3

6

8

0

2

10

6

2

(1)若采用樣本估計總體的方式,試估計小明的所有微信好友中每日走路步數(shù)超過5000步的概率;

(2)已知某人一天的走路步數(shù)超過8000步時被系統(tǒng)評定為“積極型”,否則為“懈怠型”.根據(jù)小明的統(tǒng)計完成下面的列聯(lián)表,并據(jù)此判斷是否有以上的把握認為“評定類型”與“性別”有關(guān)?

積極型

懈怠型

總計

總計

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)綠色出行,某市在推出“共享單車”后,又推出“新能源租賃汽車”.每次租車收費的標(biāo)準(zhǔn)由兩部分組成:里程計費:1元/公里;時間計費:元/分.已知陳先生的家離上班公司公里,每天上、下班租用該款汽車各一次.一次路上開車所用的時間記為(分),現(xiàn)統(tǒng)計了50次路上開車所用時間,在各時間段內(nèi)頻數(shù)分布情況如下表所示

將各時間段發(fā)生的頻率視為概率,一次路上開車所用的時間視為用車時間,范圍為分.

(1)估計陳先生一次租用新能源租賃汽車所用的時間不低于分鐘的概率;

(2)若公司每月發(fā)放元的交通補助費用,請估計是否足夠讓陳先生一個月上下班租用新能源租賃汽車(每月按天計算),并說明理由.(同一時段,用該區(qū)間的中點值作代表)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,曲線的極坐標(biāo)方程是,點是曲線上的動點.點滿足 (為極點).設(shè)點的軌跡為曲線.以極點為原點,極軸為軸的正半軸建立平面直角坐標(biāo)系,已知直線的參數(shù)方程是,(為參數(shù)).

(1)求曲線的直角坐標(biāo)方程與直線的普通方程;

(2)設(shè)直線交兩坐標(biāo)軸于,兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高中志愿者部有男志愿者6人,女志愿者4人,這些人要參加元旦聯(lián)歡會的服務(wù)工作. 從這些人中隨機抽取4人負責(zé)舞臺服務(wù)工作,另外6人負責(zé)會場服務(wù)工作.

(Ⅰ)設(shè)為事件:“負責(zé)會場服務(wù)工作的志愿者中包含女志愿者但不包含男志愿者”,求事件發(fā)生的概率.

(Ⅱ)設(shè)表示參加舞臺服務(wù)工作的女志愿者人數(shù),求隨機變量的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABCD是一塊邊長為7米的正方形鐵皮,其中ATN是一半徑為6米的扇形,已經(jīng)被腐蝕不能使用,其余部分完好可利用.工人師傅想在未被腐蝕部分截下一個有邊落在BC與CD上的長方形鐵皮,其中P是弧TN上一點.設(shè),長方形的面積為S平方米.

(1)求關(guān)于的函數(shù)解析式;

(2)求的最大值.

查看答案和解析>>

同步練習(xí)冊答案