(本題滿分14分)已知橢圓C的中心在原點(diǎn),焦點(diǎn)x軸上,點(diǎn)P為橢圓上的一個(gè)動(dòng)點(diǎn),且的最大值為90°,直線l過左焦點(diǎn)與橢圓交于A、B兩點(diǎn),

的面積最大值為12.

(1)求橢圓C的離心率;(5分)

(2)求橢圓C的方程。(9分)

(本題滿分14分)

解:(1)根據(jù)橢圓的定義,可知?jiǎng)狱c(diǎn)的軌跡為橢圓,設(shè)橢圓方程:

   其焦距為, 則 ,則

所以動(dòng)點(diǎn)M的軌跡方程為:.                  ………………………5分

(2)當(dāng)直線的斜率不存在時(shí),不滿足題意.

當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,設(shè),

,∴.                  ………………………6分

    ∵,,  ∴

   ∴ .(1)              ………………………8分

由方程組  得.  

 則,,              ………………………11分

代入①,得

,解得,. 經(jīng)驗(yàn)證。    ………………………13分

 所以,直線的方程是.       ………………………14分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)已知向量 ,,函數(shù).   (Ⅰ)求的單調(diào)增區(qū)間;  (II)若在中,角所對(duì)的邊分別是,且滿足:,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)已知,且以下命題都為真命題:

命題 實(shí)系數(shù)一元二次方程的兩根都是虛數(shù);

命題 存在復(fù)數(shù)同時(shí)滿足.

求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年吉林省高三第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分14分)已知函數(shù)

(1)若,求x的值;

(2)若對(duì)于恒成立,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題

(本題滿分14分)

已知橢圓的離心率為,過坐標(biāo)原點(diǎn)且斜率為的直線相交于、

⑴求、的值;

⑵若動(dòng)圓與橢圓和直線都沒有公共點(diǎn),試求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題

((本題滿分14分)

已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),EF∥BC,AE = x,G是BC的中點(diǎn).沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖).

(1)當(dāng)x=2時(shí),求證:BD⊥EG ;

(2)若以F、B、C、D為頂點(diǎn)的三棱錐的體積記為,

的最大值;

(3)當(dāng)取得最大值時(shí),求二面角D-BF-C的余弦值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案