(2012•寶雞模擬)設數(shù)列{an}的前項n和為Sn,點(n,
Snn
)(n∈N+)
均在函數(shù)y=2x-1的圖象上.
(1)求數(shù)列{an}的通項公式;
(2)設bn=2n-1anTn是數(shù)列{bn}的前n項和,求Tn
分析:(1)由條件知
Sn
n
=2n-1
,即Sn=2n2-n,由此能求出數(shù)列{an}的通項公式.
(2)由bn=(4n-3)2n-1,知Tn=b1+b2+b3+…+bn=1+5×21+9×22+…+(4n-3)2n-1.由此利用錯位相減法能夠求出Tn
解答:解:(1)由條件知
Sn
n
=2n-1
,
Sn=2n2-n,…(2分)
n≥2時,an=sn-sn-1=(2n2-n)-[2(n-1)2-(n-1)]=4n-3.…(4分)
又n=1時,a1=s1=1符合上式,
所以an=4n-3(n∈N+);…(6分)
(2)∵bn=(4n-3)2n-1,
Tn=b1+b2+b3+…+bn=1+5×21+9×22+…+(4n-3)2n-1.①2Tn=2+5×22+9×23+…+(4n-3)2n.②…(8分)
①-②得-Tn=1-8+2n+2-(4n-3)2n.…(10分)
Tn=(4n-7)2n+7.…(12分)
點評:本題考查數(shù)列的通項公式的求法,考查數(shù)列的前n項和公式的求法.解題時要認真審題,仔細解答,注意錯位相減法的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•寶雞模擬)已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分圖象如下圖所示:則函數(shù)f(x)的解析式為
f(x)=
2
sin(
π
8
x+
π
4
f(x)=
2
sin(
π
8
x+
π
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•寶雞模擬)已知實數(shù)x,y滿足不等式組
y≤x
x+y≤2
y≥0
,則目標函數(shù)z=x+3y的最大值為
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•寶雞模擬)若函數(shù)f(x)=
2x,(x<3)
2x-m,(x≥3)
,且f(f(2))>7,則實數(shù)m的取值范圍為
(-∞,1)
(-∞,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•寶雞模擬)設函數(shù)f(x)=sin(x+
π
6
)+2sin2
x
2

(1)求f(x)的最小正周期;
(2)記△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若f(A)=1,a=1,c=
3
,求b值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•寶雞模擬)已知等差數(shù)列{an}的前三項依次為a-1,a+1,2a+3,則此數(shù)列的通項公式an等于( 。

查看答案和解析>>

同步練習冊答案