已知定義在R的函數(shù)f(x)=m+
1
2x+1
為奇函數(shù),則m的值是( 。
A、0
B、-
1
2
C、
1
2
D、2
分析:由函數(shù)為奇函數(shù),取具體值求解即可.
解答:解:∵f(x)=m+
1
2x+1
為奇函數(shù)
∴f(0)=0
∴m=-
1
2

故答案是-
1
2
點(diǎn)評(píng):本題考查奇偶性的定義及選擇題的解法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R的函數(shù)f(x)=
-2x+a2x+1+b
(a,b為實(shí)常數(shù)).
(Ⅰ)當(dāng)a=b=1時(shí),證明:f(x)不是奇函數(shù);
(Ⅱ)設(shè)f(x)是奇函數(shù),求a與b的值;
(Ⅲ)當(dāng)f(x)是奇函數(shù)時(shí),證明對(duì)任何實(shí)數(shù)x、c都有f(x)<c2-3c+3成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R的函數(shù)f(x)對(duì)任意實(shí)數(shù)x,y恒有f(x)+f(y)=f(x+y),且當(dāng)x>0時(shí),f(x)<0,又f(1)=-
23

(1)求征,f(x)為奇函數(shù);
(2)求證:f(x)在R上是減函數(shù);
(3)求f(x)在[-3,6]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R的函數(shù)f(x)對(duì)任意的x1,x2都滿足f(x1+x2)=f(x1)+f(x2),且當(dāng)x<0時(shí),f(x)<0.
(1)判斷f(x)的單調(diào)性和奇偶性,并說(shuō)明理由;
(2)若不等式f[sin2θ-(2+m)(sinθ+cosθ)-
4
sinθ+cosθ
]+f(3+2m)>0
對(duì)一切θ∈[0,
π
2
]
恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年貴州省黔西南州興義市馬嶺中學(xué)高三(上)8月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知定義在R的函數(shù)f(x)對(duì)任意實(shí)數(shù)x,y恒有f(x)+f(y)=f(x+y),且當(dāng)x>0時(shí),f(x)<0,又f(1)=
(1)求征,f(x)為奇函數(shù);
(2)求證:f(x)在R上是減函數(shù);
(3)求f(x)在[-3,6]上的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案