精英家教網 > 高中數學 > 題目詳情

  (本題滿分12分) 如圖,正方形所在平面與平面四邊形所在平面互相垂直,△是等腰直角三角形

(1)求證:;

(2)設線段的中點為,在直線 上是否存在一點,使得?若存在,請指出點的位置,并證明你的結論;若不存在,請說明理由;

(3)求二面角正切值的大小。

      

 

【答案】

(1)略

(2)略

(3)二面角正切值為

【解析】解:(Ⅰ)因為平面ABEF⊥平面ABCD,BC平面ABCD,BC⊥AB,平面ABEF∩平面ABCD=AB,

所以BC⊥平面ABEF.

所以BC⊥EF. ……………………………………2分

因為⊿ABE為等腰直角三角形,AB=AE,

所以∠AEB=45°,

又因為∠AEF=45,

所以∠FEB=90°,即EF⊥BE. …………………3分

因為BC平面ABCD, BE平面BCE,

BC∩BE=B

所以   …………………………4分(II)取BE的中點N,連結CN,MN,則MNPC

∴PMNC為平行四邊形,所以PM∥CN.             ………6分   

∵CN在平面BCE內,PM不在平面BCE內,PM∥平面BCE  ………8分         

(III)由EA⊥AB,平面ABEF⊥平面ABCD,易知EA⊥平面ABCD.

作FG⊥AB,交BA的延長線于G,則FG∥EA.從而FG⊥平面ABCD,

作GH⊥BD于H,連結FH,則由三垂線定理知BD⊥FH.

∴  ∠FHG為二面角F-BD-A的平面角. …………………10分

∵  FA=FE,∠AEF=45°,∠AEF=90°, ∠FAG=45°.

設AB=1,則AE=1,AF=,則

在Rt⊿BGH中, ∠GBH=45°,BG=AB+AG=1+=,

,                                         

在Rt⊿FGH中, ,

∴  二面角正切值為    ………………12分

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

( 本題滿分12分 )
已知函數f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本題滿分12分)已知數列是首項為,公比的等比數列,,

,數列.

(1)求數列的通項公式;(2)求數列的前n項和Sn.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年上海市金山區(qū)高三上學期期末考試數學試卷(解析版) 題型:解答題

(本題滿分12分,第1小題6分,第2小題6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求A、B;

(2) 若,求實數a的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2012-2013學年安徽省高三10月月考理科數學試卷(解析版) 題型:解答題

(本題滿分12分)

設函數為常數),且方程有兩個實根為.

(1)求的解析式;

(2)證明:曲線的圖像是一個中心對稱圖形,并求其對稱中心.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年重慶市高三第二次月考文科數學 題型:解答題

(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)

如圖所示,直二面角中,四邊形是邊長為的正方形,,上的點,且⊥平面

(Ⅰ)求證:⊥平面

(Ⅱ)求二面角的大;

(Ⅲ)求點到平面的距離.

 

查看答案和解析>>

同步練習冊答案