數(shù)列{}中,=2,,且數(shù)列{ }是等差數(shù)列,則=___________.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}中a1=2,an+1=
1
2
(an+
1
an
)
,{bn}中bn • log9
an+1
an-1
=1,n∈N*
.求證:數(shù)列{bn}為等比數(shù)列,并求出其通項公式;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}中a1=2,an+1=
1
2
(an+
1
an
)
,{bn}中bn • log9
an+1
an-1
=1,n∈N*

(1)求證:數(shù)列{bn}為等比數(shù)列,并求出其通項公式;
(2)當n≥3(n∈N*)時,證明:
1
4
b1
+(-1)
+
2
4
b2
+(-1)2
+
3
4
b3
+(-1)3
+…+
n
4
bn
+(-1)n
<3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和sn=n2,數(shù)列{bn}中b1=2,bn=2bn-1(n≥2)
(1)求an,bn;(2)若cn=
an,n為奇數(shù)
bn,n為偶數(shù)
,求{Cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}中a1=2,an+1=
1
2
(an+
1
an
)
,{bn}中bn • log9
an+1
an-1
=1,n∈N*

(1)求證:數(shù)列{bn}為等比數(shù)列,并求出其通項公式;
(2)當n≥3(n∈N*)時,證明:
1
4
b1
+(-1)
+
2
4
b2
+(-1)2
+
3
4
b3
+(-1)3
+…+
n
4
bn
+(-1)n
37
14

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正項數(shù)列{an}中a1=2,點(
an
,an+1)
在函數(shù)f(x)=
1
3
x3+x
的導函數(shù)y=f'(x)圖象上,數(shù)列{bn}中,點(bn,Sn)在直線y=-
1
2
x+3
上,其中Sn是數(shù)列{bn}的前n項和(n∈N*
(Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)若數(shù)列{cn}滿足cn=
1
2
anbn
,且數(shù)列{cn}的前n項和Tn,求證:Tn
15
4

查看答案和解析>>

同步練習冊答案