已知拋物線y2=4x的準(zhǔn)線過雙曲線
x2
a2
-
y2
b2
=1(a>0 , b>0)
的左頂點,且此雙曲線的一條漸近線為y=2x,則雙曲線的焦距等于( 。
A、
5
B、2
5
C、
3
D、2
3
分析:先求出拋物線y2=4x的準(zhǔn)線方程,確定 a 值,在根據(jù)漸近線方程確定b的值,從而確定c的值,焦距為2c.
解答:解:由拋物線y2=4x知,p=2,
準(zhǔn)線方程為:x=-1,∴a=1,
∵雙曲線的一條漸近線為y=2x,
b
a
=2,
∴b=2∴c2=a2+b2=5,
∴焦距2c=2
5

故答案選 B
點評:本題考查拋物線與雙曲線的簡單性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x的焦點為F,其準(zhǔn)線與x軸交于點M,過M作斜率為k的直線與拋物線交于A、B兩點,弦AB的中點為P,AB的垂直平分線與x軸交于點E(x0,0).
(1)求k的取值范圍;
(2)求證:x0>3;
(3)△PEF能否成為以EF為底的等腰三角形?若能,求此k的值;若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線
y
2
 
=4x
的焦點為F,過點A(4,4)作直線l:x=-1垂線,垂足為M,則∠MAF的平分線所在直線的方程為
x-2y+4=0
x-2y+4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x,焦點為F,頂點為O,點P(m,n)在拋物線上移動,Q是OP的中點,M是FQ的中點.
(1)求點M的軌跡方程.
(2)求
nm+3
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x與直線2x+y-4=0相交于A、B兩點,拋物線的焦點為F,那么|
FA
|+|
FB
|
=
7
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x,其焦點為F,P是拋物線上一點,定點A(6,3),則|PA|+|PF|的最小值是
7
7

查看答案和解析>>

同步練習(xí)冊答案