精英家教網 > 高中數學 > 題目詳情
函數f(x)=Asinωx(A>0,ω>0)在一個周期內圖象如圖所示,其最高點為M,最低點為N,與x軸正半軸交點為P,在△MNP中,∠MNP=30°,MP=2.
(1)判斷△MNP的形狀,并給予證明;
(2)求函數f(x)的解析式,并求f(x)最大值及此時x的值.

【答案】分析:(1)由已知中函數f(x)=Asinωx(A>0,ω>0)在一個周期內圖象最高點為M,最低點為N,與x軸正半軸交點為P,△MNP中,∠MNP=30°,MP=2我們易得MN=4,利用正弦定理求了∠MPN的大小,即可判斷△MNP的形狀.
(2)由(1)中結論,我們易同M點及P點的坐標,代入分別計算出函數的最值,周期,進而求出A,ω,φ的值,即可得到函數的解析式,進而求出f(x)最大值及此時x的值.
解答:解:由函數的對稱性知:MN=2MO=2MP,∵MP=2,∴MN=4…(3分)
在△MNP中,,∴
解得:sin∠MPN=1…(5分)∴∠MPN=90°,所以△MNP為直角三角形;…(6分)
(2)由(1)得:△MOP為等邊三角形,…(7分)
…(8分)
,∵ω>0,∴…(10分)
f(x)最大值為,此時…(13分)
點評:本題考查的知識點是由y=Asin(ωx+φ)的部分圖象確定其解析式,三角形形狀的判斷,其中(1)的關鍵是根據函數圖象的對稱性質,求出MN=4,(2)的關鍵是根據(1)中結論計算出函數的最值,周期,進而求出A,ω,φ的值.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網函數f(x)=Asin(ωx+φ)(A>0,ω>0)的部分圖象如圖所示,則f(1)+f(2)+f(3)+…+f(2008)的值等于
 

查看答案和解析>>

科目:高中數學 來源: 題型:

函數f(x)=Asin(ωx-
π
6
)+1(A>0,ω>0)的最大值為3,其圖象相鄰兩條對稱軸之間的距離為
π
2

(1)求函數f(x)的解析式和當x∈[0,π]時f(x)的單調減區(qū)間;
(2)設a∈(0,
π
2
),則f(
a
2
)=2,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

函數f(x)=Asin(ωx+?)(其中A>0,ω>0,|?|<
π
2
)的圖象如圖所示,為了得到y(tǒng)=2cos2x的圖象,則只要將f(x)的圖象)向
平移
π
12
π
12
個單位長度.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=Asin(ωx+
π
4
)(其中x∈R,A>0,ω>0)的最大值為4,最小正周期為
3

(1)求函數f(x)的解析式;
(2)設a∈(
π
2
,π),且f(
2
3
a+
π
12
)=
1
2
,求cosa的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網已知函數f(x)=Asinωx(A>0,ω>0)的部分圖象如圖所示,若△EFG是邊長為2的正三角形,則f(1)=( 。
A、
6
2
B、
3
2
C、2
D、
3

查看答案和解析>>

同步練習冊答案