[已知數(shù)列{an}滿足:a1=-
1
2
,a2=1,數(shù)列{
1
an
}
為等差數(shù)列;數(shù)列{bn}中,Sn為其前n項(xiàng)和,且b1=
3
4
4nSn+3n+1=3•4n
(1)求證:數(shù)列{bn}是等比數(shù)列;
(2)記An=anan+1,求數(shù)列{An}的前n項(xiàng)和S;
(3)設(shè)數(shù)列{cn}滿足cn=
bn
an
,Tn為數(shù)列{cn}的前n項(xiàng)和,求xn=Tn+1-2Tn+Tn-1的最大值.
分析:(1)根據(jù)給出的數(shù)列{bn}的前n項(xiàng)和所滿足的等式,求出Sn,然后由bn=
S1(n=1)
Sn-Sn-1(n≥2)
求出通項(xiàng),繼而可說明數(shù)列{bn}是等比數(shù)列;
(2)由數(shù)列{
1
an
}
為等差數(shù)列求出數(shù)列{an}的通項(xiàng)公式,然后運(yùn)用裂項(xiàng)法求數(shù)列{An}的前n項(xiàng)和S;
(3)把a(bǔ)n,bn的通項(xiàng)公式代入求cn,把xn=Tn+1-2Tn+Tn-1變形后換上cn,得到關(guān)于n的函數(shù)式,寫出Xn+1,與Xn作差后分析差式的單調(diào)性,從而得到Xn的最大值.
解答:解:(1)由4nSn+3n+1=3•4n得,Sn=3-3•(
3
4
)n
,當(dāng)n≥2時(shí),bn=Sn-Sn-1=(
3
4
)n
,又b1=
3
4
,故bn=(
3
4
)n
,故數(shù)列{bn}是等比數(shù)列;
(2)∵a1=-
1
2
,a2=1
,∴
1
a1
=-2
,
1
a2
=1
,∴d=
1
a2
-
1
a1
=1-(-2)
=3,∴
1
an
=-2+(n-1)•3=3n-5
,則an=
1
3n-5
,
An=
1
(3n-5)(3n-2)
=
1
3
(
1
3n-5
-
1
3n-2
)

S=
1
3
[(-
1
2
-1)+(1-
1
4
)+(
1
4
-
1
7
)+…+(
1
3n-5
-
1
3n-2
)]=
1
3
(-
1
2
-
1
3n-2
)=
-n
6n-4
;
(3)∵cn=(3n-5)•(
3
4
)n

xn=Tn+1-2Tn+Tn-1=(Tn+1-Tn)-(Tn-Tn-1)=cn+1-cn=(
3
4
)n(
14-3n
4
)

xn+1-xn=(
3
4
)n+1(
11-3n
4
)-(
3
4
)n(
14-3n
4
)=(
3
4
)n(
3n-23
16
)
,
故當(dāng)n≤7時(shí),{xn}是遞減的,當(dāng)n≥8時(shí),{xn}是遞增的,但n≥8時(shí),xn<0
故xn的最大值為x1=(
3
4
)•(
11
4
)=
33
16
點(diǎn)評(píng):本題是等差數(shù)列和等比數(shù)列的綜合題,考查了裂項(xiàng)法對(duì)數(shù)列求和,(3)的解答運(yùn)用函數(shù)思想,借助于函數(shù)的單調(diào)性分析出了函數(shù)取最大值時(shí)的n的值,該題是中檔以上難度題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:山東省棗莊市2010屆高三年級(jí)調(diào)研考試數(shù)學(xué)文科試題 題型:044

已知數(shù)列{an}滿a1=1,任意n∈N*,有a1+3a2+5a3+…+(2n-1)an=pn(p為常數(shù))

(1)求p的值及數(shù)列{an}的通項(xiàng)公式;

(2)令bn=anan+1(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案