【題目】下列函數(shù)是偶函數(shù)并且在區(qū)間(0,+∞)上是增函數(shù)的是(
A.y=x2
B.y=x2+3x+2
C.y=lnx
D.y=3|x|

【答案】D
【解析】解:在A中,y=x2是偶函數(shù),在區(qū)間(0,+∞)上是減函數(shù),故A錯誤;
在B中,y=x2+3x+2是非奇非偶函數(shù),在區(qū)間(0,+∞)上是增函數(shù),故B錯誤;
在C中,y=lnx是非奇非偶函數(shù),在區(qū)間(0,+∞)上是增函數(shù),故C錯誤;
在D中,y=3|x|是偶函數(shù)并且在區(qū)間(0,+∞)上是增函數(shù),故D正確.
故選:D.
【考點精析】本題主要考查了函數(shù)單調(diào)性的判斷方法和函數(shù)的奇偶性的相關(guān)知識點,需要掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較;偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)x1 , x2 , …,x10為1,2,…,10的一個排列,則滿足對任意正整數(shù)m,n,且1≤m<n≤10,都有xm+m≤xn+n成立的不同排列的個數(shù)為(
A.512
B.256
C.255
D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過隨機詢問110名性別不同的大學(xué)生是否愛好某項運動,得到如下的列聯(lián)表:

總計

愛好

40

20

60

不愛好

20

30

50

總計

60

50

110

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

算得,K2≈7.8.見附表:參照附表,得到的正確結(jié)論是(
A.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項運動與性別有關(guān)”
B.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項運動與性別無關(guān)”
C.有99%以上的把握認(rèn)為“愛好該項運動與性別有關(guān)”
D.有99%以上的把握認(rèn)為“愛好該項運動與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={x|(x﹣1)(x﹣2)2=0},則集合A中元素的個數(shù)為(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】F(x)=(x3﹣2x)f(x)(x≠0)是奇函數(shù),且f(x)不恒等于零,則f(x)為(
A.奇函數(shù)
B.偶函數(shù)
C.奇函數(shù)或偶函數(shù)
D.非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}的通項公式是an=n2-7n+6.問:(1)這個數(shù)列的第4項是多少?(2)150是不是這個數(shù)列的項?若是這個數(shù)列的項,它是第幾項?(3)該數(shù)列從第幾項開始各項都是正數(shù)?
(1)這個數(shù)列的第4項是多少?
(2)150是不是這個數(shù)列的項?若是這個數(shù)列的項,它是第幾項?
(3)該數(shù)列從第幾項開始各項都是正數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=lg(x2﹣4x+3)的單調(diào)遞增區(qū)間為(
A.(﹣∞,1)
B.(﹣∞,2)
C.(3,+∞)
D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列方程中,常數(shù)項為零的是(
A.x2+x=0
B.2x2x﹣12=0
C.2(x2﹣1)=3(x﹣1)
D.2(x2+1)=x+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果f(x)dx=1,f(x)dx=-1,那么f(x)dx

查看答案和解析>>

同步練習(xí)冊答案