設(shè)函數(shù)若f(x)的值域?yàn)镽,則常數(shù)a的取值范圍是

A、         B、

C、         D、

 

【答案】

A

【解析】解:因?yàn)閮啥撕瘮?shù)都是遞增函數(shù),第一段x>2時(shí),y>4+a;當(dāng)x2,y2+a2,綜合已知函數(shù)f(x)的值域?yàn)镽,則說明了4+a2+a2解得答案為A

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)的定義域?yàn)椋?,+∞),且對任意的正實(shí)數(shù)x,y,均有f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且當(dāng)x>1時(shí),f(x)>0.
(1)求f(
1
2
)
的值,試判斷y=f(x)在(0,+∞)上的單調(diào)性,并加以證明;
(2)一個(gè)各項(xiàng)均為正數(shù)的數(shù)列{an},它的前n項(xiàng)和是Sn,若a1=3,且f(Sn)=f(an)+f(an+1)-1(n≥2,n∈N*),求數(shù)列{an}的通項(xiàng)公式;
(3)在(2)的條件下,是否存在實(shí)數(shù)M,使2na1a2an≥M•
2n+3
•(2a1-1)•(2a2-1)…(2an-1)
對于一切正整數(shù)n均成立?若存在,求出M的范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)的定義域?yàn)椋?,+∞),并且滿足三個(gè)條件:
①對任意正數(shù)x,y均有f(xy)=f(x)+f(y);  
②當(dāng)x>1時(shí),f(x)<0;
③f(3)=-1.
(1)求f(1)和f(
19
)的值;
(2)判斷并證明y=f(x)在(0,+∞)上的單調(diào)性;
(3)若存在正數(shù)k,使不等式f(kx)+f(2-x)<2有解,求正數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)的定義域?yàn)镈,值域?yàn)锽,如果存在函數(shù)x=g(t),使得函數(shù)y=f(g(t))的值域仍然是B,那么稱函數(shù)x=g(t)是函數(shù)y=f(x)的一個(gè)等值域變換.
有下列說法:
①若f(x)=2x+b,x∈R,x=t2-2t+3,t∈R,則x=g(t)不是f(x)的一個(gè)等值域變換;
②f(x)=|x|(x∈R),x=log3(t2+1),(t∈R),則x=g(t)是f(x)的一個(gè)等值域變換;
③若f(x)=x2-x+1,x∈R,x=g(t)=2t,t∈R,則x=g(t)是f(x)的一個(gè)等值域變換;
④設(shè)f(x)=log2x(x>0),若x=g(t)=5t+5-t+m是y=f(x)的一個(gè)等值域變換,且函數(shù)f(g(t))的定義域?yàn)镽,則m的取值范圍是m≤-2.
在上述說法中,正確說法的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)的定義域?yàn)镽,對于給定的正數(shù)k,定義函數(shù)fk(x)=
f(x),(f(x)≤k)
k,(f(x)>k)
,給出函數(shù)f(x)=-x2+4x-2,若對任意的x∈R,恒有fk(x)=f(x),則( 。
A、k的最大值為2
B、k的最小值為2
C、k的最大值為1
D、k的最小值為1

查看答案和解析>>

同步練習(xí)冊答案