已知f(x)=(
x-1
x+1
)2
(x>1),
(1)若g(x)=
1
f-1(x)
+
x
+2
,求g(x)的最小值;
(2)若不等式(1-
x
)•f-1(x)>m•(m-
x
)
對于一切x∈[
1
4
1
2
]
恒成立,求實(shí)數(shù)m的取值范圍.
分析:(1)先由f(x)求出f-1(x),進(jìn)而求得g(x),利用基本不等式即可求得g(x)的最小值;
(2)原不等式可化為(1+m)
x
+(1-m2)>0
,令u=
x
,則F(u)=(1+m)u+(1-m2)>0在[
1
2
,
2
2
]
上恒成立,根據(jù)一次函數(shù)的性質(zhì)可得關(guān)于m的不等式組,解出即可;
解答:解:(1)f-1(x)=
1+
x
1-
x
(0<x<1),
g(x)=
1-
x
1+
x
+
x
+2=
2
1+
x
+1+
x
≥2
2
,等號當(dāng)且僅當(dāng)
2
1+
x
=1+
x
,即x=3-2
2
時(shí)取得.
∴g(x)的最小值為2
2

(2)不等式即為1+
x
>m(m-
x
)
,也就是(1+m)
x
+(1-m2)>0
,
u=
x
,則F(u)=(1+m)u+(1-m2)>0在[
1
2
2
2
]
上恒成立,
F(
1
2
)>0且F(
2
2
)>0
,解得-1<m<
3
2
點(diǎn)評:本題考查函數(shù)恒成立問題、反函數(shù)的求解及基本不等式求最值,考查轉(zhuǎn)化思想,綜合性較強(qiáng),難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x+
bx
-3, x∈[1,2]

(1) b=2時(shí),求f(x)的值域;
(2) b≥2時(shí),f(x)的最大值為M,最小值為m,且滿足:M-m≥4,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
)
,則下列結(jié)論中正確的是( 。
A、函數(shù)y=f(x)•g(x)的最大值為1
B、函數(shù)y=f(x)•g(x)的對稱中心是(
2
+
π
4
,0),k∈Z
C、當(dāng)x∈[-
π
2
,
π
2
]
時(shí),函數(shù)y=f(x)•g(x)單調(diào)遞增
D、將f(x)的圖象向右平移
π
2
單位后得g(x)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
x+1,x∈[-1,0)
x2+1,x∈[0,1]
,則下列函數(shù)的圖象錯(cuò)誤的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若數(shù)學(xué)公式,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實(shí)數(shù)a,滿足a>1并且使g(x)在區(qū)間數(shù)學(xué)公式上的值域?yàn)?img class='latex' alt='數(shù)學(xué)公式' src='http://thumb.zyjl.cn/pic5/latex/769.png' />,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)第一輪基礎(chǔ)知識訓(xùn)練(20)(解析版) 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實(shí)數(shù)a,滿足a>1并且使g(x)在區(qū)間上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214609557716869/SYS201310232146095577168019_ST/2.png">,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案