已知函數(shù)f(x)=x3-3x2+ax+b在x=-1處的切線與x軸平行.
(Ⅰ)求a的值和函數(shù)f(x)的單調(diào)區(qū)間.
(Ⅱ)若方程恰有三個不同的解,求b的取值范圍.
【答案】分析:(1)根據(jù)已知得f′(-1)=0,得到a,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的步驟求單調(diào)區(qū)間;
(2)把給定方程做適當(dāng)?shù)牡葍r變換,得到g(x)的圖象與x軸有3個交點;求出單調(diào)區(qū)間,求出函數(shù)的極值,依題意極大值大于0,極小值小于0,進(jìn)而解出b的取值范圍.
解答:解:(1)由已知得f′(x)=3x2-6x+a,
∵在x=-1處的切線與x軸平行
∴f′(-1)=0,解得a=-9.
這時f′(x)=3x2-6x-9=3(x+1)(x-3)
由f′(x)>0,解得x>3或x<-1;
由f′(x)<0,解-1<x<3.
∴f(x)的單調(diào)增區(qū)間為(-∞,-1)∪(3,+∞);單調(diào)減區(qū)間為(-1,3).
(2)令g(x)=f(x)-(x2-15x+3)=x3-x2+6x+b-3
則原題意等價于g(x)圖象與x軸有三個交點
∵g′(x)=3x2-9x+6=3(x-1)(x-2)
∴由g′(x)>0,解得x>2或x<1;
由g′(x)<0,解得1<x<2.
∴g(x)在x=1時取得極大值g(1)=b-;g(x)在x=2時取得極小值g(2)=b-1.
依題意得,解得<b<1.
故b的取值范圍為(,1)
點評:本題考查導(dǎo)數(shù)的幾何意義及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,應(yīng)熟練掌握利用可導(dǎo)函數(shù)研究函數(shù)的單調(diào)性的步驟.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案