(2009•奉賢區(qū)一模)已知z∈C,且|z-2-2i|=1,i為虛數(shù)單位,則|z+2-2i|的最小值是
3
3
分析:在復(fù)平面內(nèi)|z-2-2i|=1表示C1(2,2)為圓心,以1為半徑的圓.|z+2-2i|表示點Z到(-2,2)的距離,數(shù)形結(jié)合求其最小值.
解答:解:設(shè)z=a+bi(a,b∈R),
滿足|z-2-2i|=1的點均在以C1(2,2)為圓心,
以1為半徑的圓上,
所以|z+2-2i|的最小值是C1,C2連線的長為4與1的差,即為3,
故答案為:3
點評:本題考查復(fù)數(shù)模的計算,利用其幾何意義,采用數(shù)形結(jié)合的數(shù)學思想方法,是常用方法.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2009•奉賢區(qū)一模)已知定義在R上的奇函數(shù)f(x)滿足f(x-4)=-f(x),且在區(qū)間[0,2]上是增函數(shù).若方程f(x)=m(m>0)在區(qū)間[-8,8]上有四個不同的根x1,x2,x3,x4,則x1+x2+x3+x4=
-8
-8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•奉賢區(qū)一模)已知數(shù)列{an}前n項和Sn=
1
3
an-1
,則數(shù)列{an}的通項公式
an=3•(-
1
2
)n
,或an=-
3
2
•(-
1
2
)n-1
an=3•(-
1
2
)n
,或an=-
3
2
•(-
1
2
)n-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•奉賢區(qū)一模)若行列式
.
456
101
sinx81
.
中,元素5的代數(shù)余子式不小于0,則x滿足的條件是
x=2kπ+
π
2
,k∈Z
x=2kπ+
π
2
,k∈Z

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•奉賢區(qū)一模)已知矩陣A=
cosαsinα
01
,B=
cosβ0
sinβ1
,則AB=
cos(α-β)sinα
sinβ1
cos(α-β)sinα
sinβ1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•奉賢區(qū)一模)已知函數(shù)f(x)=
6
x2+1

(1)在直角坐標系中,畫出函數(shù)f(x)=
6
x2+1
大致圖象.
(2)關(guān)于x的不等式f(x)≥k-7x2的解集一切實數(shù),求實數(shù)k的取值范圍;
(3)關(guān)于x的不等式f(x)>
a
x
的解集中的正整數(shù)解有3個,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案