已知橢圓C:
x2
8
+
y2
4
=1
的左焦點(diǎn)為F1,直線l:y=x-2與橢圓C交于A、B兩點(diǎn).
(1)求線段AB的長(zhǎng);
(2)求△ABF1的面積.
分析:(1)把直線方程代入橢圓方程,求得交點(diǎn)坐標(biāo),可求線段AB的長(zhǎng);
(2)法一:求出點(diǎn)F1(-2,0)到直線y=x-2的距離,可求△ABF1的面積;法二:直線y=x-2通過橢圓的右焦點(diǎn),利用S△ABF1=
1
2
|F1F2|(|y1|+|y2|)
,可得結(jié)論.
解答:解:(1)設(shè)A(x1,y1),B(x2,y2).
因?yàn)?span id="sjbdumy" class="MathJye">
x2
8
+
y2
4
=1和y=x-2相交,把兩個(gè)方程聯(lián)立,得
x2+2y2-8=0
y=x-2

代入得到x2+2(x-2)2-8=0,即3x2-8x=0,解得x1=0,x2=
8
3

所以y1=-2,y2=
2
3
,
所以|AB|=
(0-
8
3
)
2
+(-2-
2
3
)
2
=
8
3
2

(2)法一:因?yàn)辄c(diǎn)F1(-2,0)到直線y=x-2的距離為d=
|-2-2|
1+1
=2
2

所以S△ABF1=
1
2
|AB|•d=
1
2
8
2
3
•2
2
=
16
3

法二:直線y=x-2通過橢圓的右焦點(diǎn)F2(2,0),
則△ABF2的面積為S△ABF1=
1
2
|F1F2|(|y1|+|y2|)
=
1
2
×4×(2+
2
3
)=
16
3
點(diǎn)評(píng):本題考查直線與橢圓的位置關(guān)系,考查三角形面積的計(jì)算,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:
x2
8
+
y2
4
=1
的左、右焦點(diǎn)分別為F1、F2,點(diǎn)P為橢圓上一點(diǎn),若以(1,0)為圓心的圓C與直線PF1,PF2均相切,則點(diǎn)P的橫坐標(biāo)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•重慶一模)已知橢圓E:
x2
8
+
y2
4
=1的左焦點(diǎn)為F,左準(zhǔn)線l與x軸的交點(diǎn)是圓C的圓心,圓C恰好經(jīng)過坐標(biāo)原點(diǎn)O,設(shè)G是圓C上任意一點(diǎn).
(Ⅰ)求圓C的方程;
(Ⅱ)若直線FG與直線l交于點(diǎn)T,且G為線段FT的中點(diǎn),求直線FG被圓C所截得的弦長(zhǎng);
(Ⅲ)在平面上是否存在一點(diǎn)P,使得
GF
GP
=
1
2
?若存在,求出點(diǎn)P坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,雙曲線
x2
2
-
y2
2
=1的漸近線與橢圓有四個(gè)交點(diǎn),以這四個(gè)交點(diǎn)為頂點(diǎn)的四邊形的面積為16,則橢圓的方程為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:
x2
8
+
y2
4
=1
的左焦點(diǎn)為F1,直線l:y=x-2與橢圓C交于A、B兩點(diǎn).
(1)求線段AB的長(zhǎng);
(2)求△ABF1的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案