精英家教網 > 高中數學 > 題目詳情
過拋物線x2=4y的焦點F作直線交拋物線于P(x1,y1),Q (x2,y2)兩點,若y1+y2=6,則|PQ|的值為
8
8
分析:設出直線方程與拋物線方程聯(lián)立,利用韋達定理及弦長公式,即可求得結論.
解答:解:x2=4y的焦點為(0,1),設過焦點(0,1)的直線為y=kx+1
則令kx+1=
x2
4
,即x2-4kx-4=0,由韋達定理得x1+x2=4k,x1x2=-4
因為y1=kx1+1,y2=kx2+2
所以y1+y2=k(x1+x2)+2=4k2+2=6,所以k2=1
所以|PQ|=
1+k2
|x1-x2|=
1+k2
×
(x1+x2)2-4x1x2
=8
故答案為:8
點評:本題考查直線與拋物線的位置關系,考查韋達定理的運用,考查學生的計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

過拋物線x2=4y的焦點F作傾斜角為30°的直線,與拋物線分別交于A、B兩點(A在y軸左側),則
|AF||FB|
=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

過拋物線x2=4y的焦點F作直線交拋物線于P1(x1、y1),P2(x2、y2)兩點,若y1+y2=6,則|P1P2|的值為(  )
A、5B、6C、8D、10

查看答案和解析>>

科目:高中數學 來源: 題型:

過拋物線x2=4y的焦點F作直線交拋物線于P1(x1,y1)P2(x2,y2)兩點,若y1+y2=6,求|P1P2|的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,過拋物線x2=4y的對稱軸上任一點P(0,m)(m>0)作直線與拋物線交于A(x1,y1),B(x2,y2)兩點.
(I)若
AP
PB
(λ∈R)
,證明:λ=-
x1
x2
;
(II)在(I)條件下,若點Q是點P關于原點對稱點,證明:
QP
⊥(
QA
QB
)
;
(III)設直線AB的方程是x-2y+12=0,過A,B兩點的圓C與拋物線在點A處有共同的切線,求圓C的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知過拋物線x2=4y的焦點,斜率為k(k>0)的直線l交拋物線于A(x1,y2),B(x2,y2)(x1<x2)兩點,且|AB|=8.
(1)求直線l的方程;
(2)若點C(x3,y3)是拋物線弧AB上的一點,求△ABC面積的最大值,并求出點C的坐標.

查看答案和解析>>

同步練習冊答案