已知點(diǎn)A(1,1),B(-1-3),直線l:x-2y+2=0.
(1)求線段AB的垂直平分線的方程;
(2)若一圓經(jīng)過(guò)點(diǎn)A,B,且圓心在直線l上,求此圓的標(biāo)準(zhǔn)方程.
分析:(1)線段AB的中點(diǎn)為(0,-1),斜率為
-1
KAB
,用點(diǎn)斜式求得線段AB的垂直平分線的方程.
(2)設(shè)圓心坐標(biāo)為 C(2b-2,b),則由題意可得 半徑r=CA=CB,求出b的值,即得圓心坐標(biāo)和半徑,從而得到圓的標(biāo)準(zhǔn)方程.
解答:解:(1)線段AB的中點(diǎn)為(0,-1),斜率為
-1
KAB
=
-1
4
2
=-
1
2

故線段AB的垂直平分線的方程為y+1=-
1
2
(x-0 ),即 x+2y+2=0.
(2)設(shè)圓心坐標(biāo)為 C(2b-2,b),則由題意可得 半徑r=CA=CB,
∴(2b-2-1)2+(b-1)2=(2b-2+1)2+(b+3)2=r2
解得  b=0,r2=10,故圓心為 (-2,0),故此圓的標(biāo)準(zhǔn)方程為 (x+2)2+y2=10.
點(diǎn)評(píng):本題考查用點(diǎn)斜式求直線方程,兩直線垂直的性質(zhì),線段的中點(diǎn)公式,求圓的標(biāo)準(zhǔn)方程,求出圓心的坐標(biāo)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(1,1)是橢圓
x2
a2
+
y2
b2
=1(a>b>0)上一點(diǎn),F(xiàn)1,F(xiàn)2是橢圓的兩焦點(diǎn),且滿足|AF1|+|AF2|=4.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)求過(guò)A(1,1)與橢圓相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(-1,1),點(diǎn)B(2,y),向量
a
=(1,2),若
AB
a
,則實(shí)數(shù)y的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xoy中,已知點(diǎn)A(-1,1),P是動(dòng)點(diǎn),且△POA的三邊所在直線的斜率滿足kOP+kOA=kPA
(1)求點(diǎn)P的軌跡C的方程
(2)若Q是軌跡C上異于點(diǎn)P的一個(gè)點(diǎn),且
PQ
OA
,直線OP與QA交于點(diǎn)M.
問(wèn):是否存在點(diǎn)P,使得△PQA和△PAM的面積滿足S△PQA=2S△PAM?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(-1,1),B(1,1),點(diǎn)P是直線l:y=x-2上的一動(dòng)點(diǎn),當(dāng)∠APB最大時(shí),則過(guò)A,B,P的圓的方程是
x2+y2=2
x2+y2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•北京)已知點(diǎn)A(1,-1),B(3,0),C(2,1).若平面區(qū)域D由所有滿足
AP
AB
AC
(1≤λ≤2,0≤μ≤1)的點(diǎn)P組成,則D的面積為
3
3

查看答案和解析>>

同步練習(xí)冊(cè)答案