第16屆亞運會于2010年11月12日在廣州舉辦,運動會期間來自廣州大學和中山大學的共計6名大學生志愿者將被隨機平均分配到跳水、籃球、體操這三個比賽場館服務,且跳水場館至少有一名廣州大學志愿者的概率是.
(1)求6名志愿者中來自廣州大學、中山大學的各有幾人?
(2)設隨機變量X為在體操比賽場館服務的廣州大學志愿者的人數(shù),求X的分布列及均值.
(1)2  4    (2) X的分布列為
X
0
1
2
P




解:(1)記“至少一名廣州大學志愿者被分到跳水比賽場館”為事件A,則A的對立事件為“沒有廣州大學志愿者被分到跳水比賽場館”,
設有廣州大學志愿者x人(1≤x<6),
則P(A)=1-,即x2-11x+18=0,
解得x=2或x=9(舍去),
即來自廣州大學的志愿者有2人,來自中山大學的志愿者有4人.
(2)X的所有可能取值為0,1,2.
P(X=0)=,P(X=1)=,
P(X=2)=.
故X的分布列為
X
0
1
2
P



從而E(X)=0×+1×+2× (人).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

2014年2月21日,《中共中央關于全面深化改革若干重大問題的決定》明確:堅持計劃生育的基本國策,啟動實施一方是獨生子女的夫婦可生育兩個孩子的政策.為了解某地區(qū)城鎮(zhèn)居民和農(nóng)村居民對“單獨兩孩”的看法,某媒體在該地區(qū)選擇了3600人調(diào)查,就是否贊成“單獨兩孩”的問題,調(diào)查統(tǒng)計的結(jié)果如下表:

贊成
反對
無所謂
農(nóng)村居民
2100人
120人
y人
城鎮(zhèn)居民
600人
x人
z人
已知在全體樣本中隨機抽取1人,抽到持“反對”態(tài)度的人的概率為0.05.
(1)現(xiàn)在分層抽樣的方法在所有參與調(diào)查的人中抽取360人進行問卷訪談,問應在持“無所謂”態(tài)度的人中抽取多少人?
(2)在持“反對”態(tài)度的人中,用分層抽樣的方法抽取6人,按每組3人分成兩組進行深入交流,求第一組中農(nóng)村居民人數(shù)的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

為迎接2013年“兩會”(全國人大3月5日-3月18日、全國政協(xié)3月3日-3月14日)的勝利召開,某機構舉辦猜獎活動,參與者需先后回答兩道選擇題,問題A有四個選項,問題B有五個選項,但都只有一個選項是正確的,正確回答問題A可獲獎金元,正確回答問題B可獲獎金元.活動規(guī)定:參與者可任意選擇回答問題的順序,如果第一個問題回答錯誤,則該參與者猜獎活動中止.假設一個參與者在回答問題前,對這兩個問題都很陌生,試確定哪種回答問題的順序能使該參與者獲獎金額的期望值較大.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設進入某商場的每一位顧客購買甲種商品的概率為0.5,購買乙種商品的概率為0.6, 且購買甲種商品與購買乙種商品相互獨立,各顧客之間購買商品也是相互獨立的.
(1)求進入商場的1位顧客至少購買甲、乙兩種商品中的一種的概率;
(2)記表示進入商場的3位顧客中至少購買甲、乙兩種商品中的一種的人數(shù),求的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設隨機變量,則        .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

隨機變量X的分布列如下:
X
-1
0
1
P
a
b
c
其中a,b,c成等差數(shù)列,若E(X)=,則V(X)的值為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

利用下列盈利表中的數(shù)據(jù)進行決策,應選擇的方案是(  )
A.A1B.A2C.A3D.A4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

隨機變量X的分布列如下:
ξ
-1
0
1
P
a
b
c
其中a,b,c成等差數(shù)列,若,則的值是           

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設隨機變量的概率分布律如下表所示:








其中,,成等差數(shù)列,若隨機變量的的均值為,則的方差為___________.

查看答案和解析>>

同步練習冊答案