寫(xiě)出下列問(wèn)題中所有可能的排列

123,4四個(gè)數(shù)字中任取三個(gè)數(shù)字組成三位數(shù),共可組成多少個(gè)不同的三位數(shù)?

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an},{bn}中,a1=a,b1=b,
an=-2an-1+4bn-1
bn=-5an-1+7bn-1
,(n∈N,n≥2).請(qǐng)按照要求完成下列各題,并將答案填在答題紙的指定位置上.
(1)可考慮利用算法來(lái)求am,bm的值,其中m為給定的數(shù)據(jù)(m≥2,m∈N).右圖算法中,虛線(xiàn)框中所缺的流程,可以為下面A、B、C、D中的
ACD
ACD

(請(qǐng)?zhí)畛鋈看鸢福?BR>A、B、
C、D、

(2)我們可證明當(dāng)a≠b,5a≠4b時(shí),{an-bn}及{5an-4bn}均為等比數(shù)列,請(qǐng)按答紙題要求,完成一個(gè)問(wèn)題證明,并填空.
證明:{an-bn}是等比數(shù)列,過(guò)程如下:an-bn=(-2an-1+4bn-1)+(5an-1-7bn-1)=3an-1-3bn-1=3(an-1-bn-1
所以{an-bn}是以a1-b1=a-b≠0為首項(xiàng),以
3
3
為公比的等比數(shù)列;
同理{5an-4bn}是以5a1-4b1=5a-4b≠0為首項(xiàng),以
2
2
為公比的等比數(shù)列
(3)若將an,bn寫(xiě)成列向量形式,則存在矩陣A,使
an
bn
=A
an-1
bn-1
=A(A
an-2
bn-2
)=A2
an-2
bn-2
=…=An-1
a1
b1
,請(qǐng)回答下面問(wèn)題:
①寫(xiě)出矩陣A=
-24
-57
-24
-57
;  ②若矩陣Bn=A+A2+A3+…+An,矩陣Cn=PBnQ,其中矩陣Cn只有一個(gè)元素,且該元素為Bn中所有元素的和,請(qǐng)寫(xiě)出滿(mǎn)足要求的一組P,Q:
P=
1 
1 
Q=
1
1
P=
1 
1 
,Q=
1
1
; ③矩陣Cn中的唯一元素是
2n+2-4
2n+2-4

計(jì)算過(guò)程如下:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

寫(xiě)出下列問(wèn)題中所有可能的排列

1,23,4四個(gè)數(shù)字中任取三個(gè)數(shù)字組成三位數(shù),共可組成多少個(gè)不同的三位數(shù)?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

寫(xiě)出下列問(wèn)題中所有可能的排列.

從1,2,3,4四個(gè)數(shù)字中任取三個(gè)數(shù)字組成三位數(shù),共可組成多少不同的三位數(shù)?

查看答案和解析>>

同步練習(xí)冊(cè)答案