分析 根據(jù)函數(shù)的解析式,列出使函數(shù)解析式有意義的不等式組,求出解集即可
解答 解:函數(shù)f(x)=$\sqrt{x-1}$+log2${\;}^{(2-{x}^{2})}$有意義,
其定義域滿足:$\left\{\begin{array}{l}{x-1≥0}\\{2-{x}^{2}>0}\end{array}\right.$
解得:1$≤x<\sqrt{2}$.
∴函數(shù)f(x)的定義域為{x|1$≤x<\sqrt{2}$}.
故答案為{x|1$≤x<\sqrt{2}$}.
點評 本題考查了求函數(shù)定義域的應用問題,解題的關鍵是列出使函數(shù)解析式有意義的不等式組,是基礎題目.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8 | B. | 6 | C. | 4 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2-$\frac{{\sqrt{5}}}{5}$ | B. | 2$\sqrt{5}$-1 | C. | 1-$\frac{{\sqrt{21}}}{21}$ | D. | $\sqrt{21}$-1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=sin4x | B. | .y=tan2x | C. | y=cos22x-sin22x | D. | y=cos2x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\sqrt{6}$ | C. | 2$\sqrt{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com