【題目】華為董事會決定投資開發(fā)新款軟件,估計能獲得萬元到萬元的投資收益,討論了一個對課題組的獎勵方案:獎金(單位:萬元)隨投資收益(單位:萬元)的增加而增加,且獎金不超過萬元,同時獎金不超過投資收益的.

1)請分析函數(shù)是否符合華為要求的獎勵函數(shù)模型,并說明原因;

2)若華為公司采用模型函數(shù)作為獎勵函數(shù)模型,試確定正整數(shù)的取值集合.

【答案】1)不符合,原因見解析(2的取值集合為

【解析】

1)根據(jù)題意,總結(jié)獎勵模型需要滿足的條件①在定義域上是增函數(shù);②恒成立;③恒成立;判斷單調(diào)性及最值,即可求解;

2)由題意,依此判斷分段函數(shù)的單調(diào)性,最大值和,即可求解參數(shù)范圍,由為正整數(shù),即可確定取值集合.

1)設(shè)獎勵函數(shù)模型為,按公司對函數(shù)模型的基本要求,函數(shù)滿足:當(dāng)時,①在定義域上是增函數(shù);②恒成立;③恒成立.對于函數(shù)模型.當(dāng)時,是增函數(shù),所以不恒成立.故該函數(shù)模型不符合公司要求.

2)對于函數(shù)模型,當(dāng)時,在定義域上是增函數(shù),且恒成立;當(dāng)時,,只有時,在定義域上是增函數(shù);要使恒成立,,即;要使恒成立對恒成立,即,即恒成立,所以

綜上所述,,所以滿足條件的正整數(shù)a的取值集合為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某品牌經(jīng)銷商在一廣場隨機(jī)采訪男性和女性用戶各50名,其中每天玩微信超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:

微信控

非微信控

合計

男性

26

24

50

女性

30

20

50

合計

56

44

100

(1)根據(jù)以上數(shù)據(jù),能否有95%的把握認(rèn)為“微信控”與“性別”有關(guān)?

(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人,求所抽取的5人中“微信控”和“非微信控”的人數(shù);

(3)從(2)中抽取的5位女性中,再隨機(jī)抽取3人贈送禮品,試求抽取3人中恰有2人位“微信控”的概率.

參考公式: ,其中.

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.455

0.708

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線的方程為.

1)求曲線的直角坐標(biāo)方程;

2)設(shè)曲線與直線交于點(diǎn),點(diǎn)的坐標(biāo)為(31),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)甲、乙、丙三所單位進(jìn)行招聘,其中甲單位招聘2名,乙單位招聘2名,丙單位招聘1名,并且甲單位要至少招聘一名男生,現(xiàn)有3男3女參加三所單位的招聘,則不同的錄取方案種數(shù)為( )

A.36B.72C.108D.144

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的離心率為,左、右頂點(diǎn)分別為A,B,點(diǎn)M是橢圓C上異于A,B的一點(diǎn),直線AMy軸交于點(diǎn)P

(Ⅰ)若點(diǎn)P在橢圓C的內(nèi)部,求直線AM的斜率的取值范圍;

(Ⅱ)設(shè)橢圓C的右焦點(diǎn)為F,點(diǎn)Qy軸上,且∠PFQ=90°,求證:AQBM

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓周率是圓的周長與直徑的比值,一般用希臘字母表示.早在公元480年左右,南北朝時期的數(shù)學(xué)家祖沖之就得出精確到小數(shù)點(diǎn)后7位的結(jié)果,他是世界上第一個把圓周率的數(shù)值計算到小數(shù)點(diǎn)后第7位的人,這比歐洲早了約1000.生活中,我們也可以通過如下隨機(jī)模擬試驗(yàn)來估計的值:在區(qū)間內(nèi)隨機(jī)取個數(shù),構(gòu)成個數(shù)對,設(shè)能與1構(gòu)成鈍角三角形三邊的數(shù)對對,則通過隨機(jī)模擬的方法得到的的近似值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,為棱的中點(diǎn),.

(1)證明:平面;

(2)設(shè)二面角的正切值為,,,求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點(diǎn)到直線的距離比到定點(diǎn)的距離大1.

(1)求動點(diǎn)的軌跡的方程.

(2)若為直線上一動點(diǎn),過點(diǎn)作曲線的兩條切線,,切點(diǎn)為,的中點(diǎn).

①求證:軸;

②直線是否恒過一定點(diǎn)?若是,求出這個定點(diǎn)的坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型超市抽查了100天該超市的日純利潤數(shù)據(jù),并將日純利潤數(shù)據(jù)分成以下幾組(單位:萬元):,,,,,統(tǒng)計結(jié)果如下表所示:

組別

頻數(shù)

5

20

30

30

10

5

以上述樣本分布的頻率估計總體分布的概率,解決下列問題:

1)從該大型超市近幾年的銷售記錄中抽出5天,求其中日純利潤在區(qū)間內(nèi)的天數(shù)不少于2的概率;

2)該超市經(jīng)理由頻數(shù)分布表可以認(rèn)為,該大型超市每天的純利潤服從正態(tài)分布,其中,近似為樣本平均數(shù)(每組數(shù)據(jù)取區(qū)間的中點(diǎn)值).

①試?yán)迷撜龖B(tài)分布,估計該大型超市1000天內(nèi)日純利潤在區(qū)間內(nèi)的天數(shù)(精確到個位);

②該大型超市負(fù)責(zé)人根據(jù)每日的純利潤給超市員工制定了兩種不同的獎勵方案:

方案一:直接發(fā)放獎金,日純利潤低于時每名員工發(fā)放獎金70元,日純利潤不低于時每名員工發(fā)放獎金90元;

方案二:利用抽獎的方式獲得獎金,其中日純利潤不低于時每位員工均有兩次抽獎機(jī)會,日純利潤低于時每位員工只有一次抽獎機(jī)會;每次抽獎的獎金及對應(yīng)的概率分別為

金額

50

100

概率

小張恰好為該大型超市的一名員工,則從數(shù)學(xué)期望的角度看,小張選擇哪種獎勵方案更有利?

參考數(shù)據(jù):若,則,.

查看答案和解析>>

同步練習(xí)冊答案