已知y=log4(2x+3-x2).
(1)求定義域;
(2)求f(x)的單調(diào)區(qū)間;
(3)求y的最大值,并求取最大值時(shí)x的值.
x=1,u取最大值4時(shí),y取最大值1.
(1)由2x+3-x2>0,解得-1<x<3.
∴f(x)的定義域?yàn)閧x|-1<x<3}.
(2)令u=2x+3-x2,則u>0,y=log4u.
由于u=2x+3-x2=-(x-1)2+4,
考慮定義域,可知其增區(qū)間是(-1,1],減區(qū)間是[1,3).
又y=log4u在(0,+∞)上為增函數(shù),故該函數(shù)單調(diào)遞增區(qū)間為(-1,1],減區(qū)間為[1,3).
(3)∵u=2x+3-x2=-(x-1)2+4≤4,
∴y=log4u≤log44=1.
故當(dāng)x=1,u取最大值4時(shí),y取最大值1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆浙江省高一12月階段性檢測(cè)數(shù)學(xué)試卷 題型:解答題
已知y=log4(2x+3-x2).
(1)求定義域;(2)求f(x)的單調(diào)區(qū)間;(3)求y的最大值,并求取最大值時(shí)x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2005-2006學(xué)年浙江省杭州市源清中學(xué)高一(上)12月月考數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年高考數(shù)學(xué)復(fù)習(xí):2.7 對(duì)數(shù)函數(shù)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com