【題目】下列說法:

①將一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變;

②設有一個線性回歸方程,變量x增加1個單位時,y平均增加5個單位;

③設具有相關關系的兩個變量x,y的相關系數(shù)為r,則|r|越接近于0,x和y之間的線性相關程度越強;

④在一個2×2列聯(lián)表中,由計算得K2的值,則K2的值越大,判斷兩個變量間有關聯(lián)的把握就越大.

以上錯誤結(jié)論的個數(shù)為(  )

A. 0 B. 1 C. 2 D. 3

【答案】C

【解析】方差反映一組數(shù)據(jù)的波動大小,將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變,故①正確;在線性回歸方程=3-5x中,變量x增加1個單位時,y平均減小5個單位,故②不正確;根據(jù)線性回歸分析中相關系數(shù)的定義:在線性回歸分析中,相關系數(shù)為r,|r|越接近于1,相關程度越強,故③不正確;對分類變量x與y的隨機變量的觀測值K2來說,K2越大,“x與y有關系”的可信程度越大,故④正確.綜上所述,錯誤結(jié)論的個數(shù)為2,故選C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知某路段最高限速60km/h,電子監(jiān)控測得連續(xù)6輛汽車的速度用莖葉圖表示如下(單位:km/h).若從中任取2輛,則恰好有1輛汽車超速的概率為(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)判斷函數(shù)的單調(diào)性;

(2)若,當時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在梯形中,,四邊形

為矩形,平面平面,.

I)求證:平面;

II)點在線段上運動,設平面與平面所成二面角的平面角為,

試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設p:關于x的不等式ax>1的解集是{x|x<0};q:函數(shù) 的定義域為R.若p∨q是真命題,p∧q是假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)F(x)= 是定義在R上的函數(shù),其中f(x)的導函數(shù)為f′(x),滿足f′(x)<f(x)對于x∈R恒成立,則(
A.f(2)>e2f(0),f(2012)<e2012f(0)
B.f(2)<e2f(0),f(2012)<e2012f(0)
C.f(2)>e2f(0),f(2012)>e2012f(0)
D.f(2)<e2f(0),f(2012)>e2012f(0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場銷售某種品牌的空調(diào)器,每周周初購進一定數(shù)量的空調(diào)器,商場每銷售一臺空調(diào)器可獲利500元,若供大于求,則每臺多余的空調(diào)器需交保管費100元;若供不應求,則可從其他商店調(diào)劑供應,此時每臺空調(diào)器僅獲利潤200元.
(Ⅰ)若該商場周初購進20臺空調(diào)器,求當周的利潤(單位:元)關于當周需求量n(單位:臺,n∈N)的函數(shù)解析式f(n);
(Ⅱ)該商場記錄了去年夏天(共10周)空調(diào)器需求量n(單位:臺),整理得表:

周需求量n

18

19

20

21

22

頻數(shù)

1

2

3

3

1

以10周記錄的各需求量的頻率作為各需求量發(fā)生的概率,若商場周初購進20臺空調(diào)器,X表示當周的利潤(單位:元),求X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若曲線的切線經(jīng)過點,求的方程;

(2)若方程有兩個不相等的實數(shù)根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直四棱柱ABCD﹣A1B1C1D1底面是邊長為1的正方形,高AA1= ,點A是平面α內(nèi)的一個定點,AA1與α所成角為 ,點C1在平面α內(nèi)的射影為P,當四棱柱ABCD﹣A1B1C1D1按要求運動時(允許四棱柱上的點在平面α的同側(cè)或異側(cè)),點P所經(jīng)過的區(qū)域的面積=

查看答案和解析>>

同步練習冊答案