已知定義在R的單調(diào)函數(shù)f (x),存在常數(shù)x0,使得對(duì)于任意的x1、x2∈R,總有f (x0x1+x0x2)=f (x0)+f (x1)+f (x2)成立.
(1)求x0的值;
(2)若f (x0)=1,an=
1
f(n)
 (n∈N+),Sn=a1a2+a2a3+…+anan+1,試比較Sn
1
2
的大小.
分析:(1)由題意對(duì)于任意實(shí)數(shù)x1,x2等式恒成立,故可采用賦值法求解;
(2)先證明{f(n)}是以1為首項(xiàng),2為公差的等差數(shù)列,由此得 an=
1
2n-1
,從而可求Sn,再比較Sn
1
2
的大小,即可求得結(jié)果.
解答:解:(1)令x1=x2=0,得f(0)=f(x0)+2f(0),∴f(x0)=-f(0).①
令x1=1,x2=0,得f(x0)=f(x0)+f(1)+f(0),∴f(1)=-f(0).②
由①②得   f(x0)=f(1).∴f(x)為單調(diào)函數(shù),
∴x0=1.
(2)由(1)得f(x1+x2)=f(x1)+f(x2)+f(1)=f(x1)+f(x2)+1.
∵f(n+1)=f(n)+f(1)+1=f(n)+2,f(1)=1,∴f(n)=2n-1.(n∈Z*
∴an=
1
2n-1

∴Sn=
1
1×3
+
1
3×5
+…+
1
(2n-1)(2n+1)
=
1
2
( 1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1

=
1
2
(1-
1
2n+1
)<
1
2
點(diǎn)評(píng):本題考查抽象函數(shù)的求值問題,一般采用賦值法解決,求數(shù)列的和,關(guān)鍵是求出其通項(xiàng),再利用相應(yīng)的求和公式,綜合性較強(qiáng),屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的單調(diào)遞增奇函數(shù)以f(x),若當(dāng)0≤θ≤
π2
時(shí),f(cosθ+msinθ)+f(-2m-2)<0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定義在R上的單調(diào)遞增奇函數(shù)以f(x),若當(dāng)0≤θ≤數(shù)學(xué)公式時(shí),f(cosθ+msinθ)+f(-2m-2)<0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案