如圖,圓和圓的半徑都等于1,.過動點P分別作圓、圓的切線PM、PN(M、N為切點),使得,試建立平面直角坐標系,并求動點P的軌跡方程.

答案:略
解析:

解:以的中點O為原點,所在直線為x軸,建立如圖所示的坐標系,則

由已知,

又∵兩圓的半徑均為1

,

設(shè)P(xy),

,

∴所求動點P的軌跡方程為

()


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•普陀區(qū)一模)如圖,已知圓C:x2+y2=r2與x軸負半軸的交點為A.由點A出發(fā)的射線l的斜率為k,且k為有理數(shù).射線l與圓C相交于另一點B.
(1)當(dāng)r=1時,試用k表示點B的坐標;
(2)當(dāng)r=1時,試證明:點B一定是單位圓C上的有理點;(說明:坐標平面上,橫、縱坐標都為有理數(shù)的點為有理點.我們知道,一個有理數(shù)可以表示為
qp
,其中p、q均為整數(shù)且p、q互質(zhì))
(3)定義:實半軸長a、虛半軸長b和半焦距c都是正整數(shù)的雙曲線為“整勾股雙曲線”.
當(dāng)0<k<1時,是否能構(gòu)造“整勾股雙曲線”,它的實半軸長、虛半軸長和半焦距的長恰可由點B的橫坐標、縱坐標和半徑r的數(shù)值構(gòu)成?若能,請嘗試探索其構(gòu)造方法;若不能,試簡述你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

如圖,圓和圓的半徑都等于1,.過動點P分別作圓、圓的切線PM、PN(M、N為切點),使得,試建立平面直角坐標系,并求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知圓軸負半軸的交點為. 由點出發(fā)的射線的斜率為. 射線與圓相交于另一點

(1)當(dāng)時,試用表示點的坐標;

(2)當(dāng)時,求證:“射線的斜率為有理數(shù)”是“點為單位圓上的有理點”的充要條件;(說明:坐標平面上,橫、縱坐標都為有理數(shù)的點為有理點.我們知道,一個有理數(shù)可以表示為,其中均為整數(shù)且、互質(zhì))

(3)定義:實半軸長、虛半軸長和半焦距都是正整數(shù)的雙曲線為“整勾股雙曲線”.

當(dāng)為有理數(shù)且時,試證明:一定能構(gòu)造偶數(shù)個“整勾股雙曲線”(規(guī)定:實軸長和虛軸長都對應(yīng)相等的雙曲線為同一個雙曲線),它的實半軸長、虛半軸長和半焦距的長恰可由點的橫坐標、縱坐標和半徑的數(shù)值構(gòu)成. 說明你的理由并請嘗試給出構(gòu)造方法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,圓O1和圓O2的半徑都是1,|O1O2|=4,過動點P分別作圓O1和圓O2的切線PM、PN(M、N為切點),使得.試建立平面直角坐標系,并求動點P的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案