如圖,圓和圓的半徑都等于1,.過動點P分別作圓、圓的切線PM、PN(M、N為切點),使得,試建立平面直角坐標系,并求動點P的軌跡方程.
科目:高中數(shù)學(xué) 來源: 題型:
q | p |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:044
如圖,圓
和圓的半徑都等于1,.過動點P分別作圓、圓的切線PM、PN(M、N為切點),使得,試建立平面直角坐標系,并求動點P的軌跡方程.查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,已知圓與軸負半軸的交點為. 由點出發(fā)的射線的斜率為. 射線與圓相交于另一點
(1)當(dāng)時,試用表示點的坐標;
(2)當(dāng)時,求證:“射線的斜率為有理數(shù)”是“點為單位圓上的有理點”的充要條件;(說明:坐標平面上,橫、縱坐標都為有理數(shù)的點為有理點.我們知道,一個有理數(shù)可以表示為,其中、均為整數(shù)且、互質(zhì))
(3)定義:實半軸長、虛半軸長和半焦距都是正整數(shù)的雙曲線為“整勾股雙曲線”.
當(dāng)為有理數(shù)且時,試證明:一定能構(gòu)造偶數(shù)個“整勾股雙曲線”(規(guī)定:實軸長和虛軸長都對應(yīng)相等的雙曲線為同一個雙曲線),它的實半軸長、虛半軸長和半焦距的長恰可由點的橫坐標、縱坐標和半徑的數(shù)值構(gòu)成. 說明你的理由并請嘗試給出構(gòu)造方法.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,圓O1和圓O2的半徑都是1,|O1O2|=4,過動點P分別作圓O1和圓O2的切線PM、PN(M、N為切點),使得.試建立平面直角坐標系,并求動點P的軌跡方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com