精英家教網(wǎng)在正方體ABCD-A1B1C1D1中,直線A1B與平面BC1D1所成的角為(  )
A、arctan
2
2
B、
π
6
C、
π
4
D、
π
3
分析:建立空間直角坐標系,求出平面BC1D1的法向量,利用公式求出直線A1B與平面BC1D1所成的角.
解答:精英家教網(wǎng)解:如圖建立空間直角坐標系,設棱長為1,
CB1
是平面BC1D1的法向量,
CB1
=(0,1,1)
BA1
=(-1,0,1)
直線A1B與平面BC1D1所成的角為α
sinα=
CB1
BA1
|
CB1
|| 
BA1
|
=
1
2

所以α=
π
6

故選B.
點評:本題考查用空間向量求直線與平面的夾角,考查邏輯思維能力,計算能力,是基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

16、在正方體ABCD-A′B′C′D′中,過對角線BD′的一個平面交AA′于E,交CC′于F,則
①四邊形BFD′E一定是平行四邊形;
②四邊形BFD′E有可能是正方形;
③四邊形BFD′E在底面ABCD內(nèi)的投影一定是正方形;
④平面BFD′E有可能垂直于平面BB′D.
以上結(jié)論正確的為
①③④
.(寫出所有正確結(jié)論的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A′B′C′D′中,E為D′C′的中點,則二面角E-AB-C的大小為
45°
45°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A′B′C′D′中,E,F(xiàn)分別是AB′,BC′的中點. 
(1)若M為BB′的中點,證明:平面EMF∥平面ABCD.
(2)求異面直線EF與AD′所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖在正方體ABCD-A  1B1C1D1中,O是底面ABCD的中心,B1H⊥D1O,H為垂足,則B1H與平面AD1C的位置關(guān)系是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正方體ABCD-A′B′C′D′中,過對角線BD′的一個平面交棱AA′于E,交棱CC′于F,則:
①四邊形BFD′E一定是平行四邊形;
②四邊形BFD′E有可能是正方形;
③四邊形BFD′E有可能是菱形;
④四邊形BFD′E有可能垂直于平面BB′D.
其中所有正確結(jié)論的序號是
 

查看答案和解析>>

同步練習冊答案