20.設(shè)集合A={x|-4<x<2},B={x|x<1},則如圖中陰影部分表示的集合為[1,2).

分析 根據(jù)Venn圖和集合之間的關(guān)系進行判斷.

解答 解:由Venn圖可知,陰影部分的元素為屬于A當不屬于B的元素構(gòu)成,所以用集合表示為A∩(∁UB).
∵B={x|x<1},
∴∁UB={x|x≥1},
則A∩(∁UB)={x|1≤x<2},
故答案為:[1,2).

點評 本題主要考查Venn圖表達 集合的關(guān)系和運算,比較基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)f(x)=|sin(2|x|+$\frac{π}{3}$)|的一個單調(diào)區(qū)間(  )
A.(-$\frac{π}{6}$,0)B.(-$\frac{π}{12}$,$\frac{π}{6}$)C.(0,$\frac{π}{6}$)D.($\frac{π}{6}$,$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.函數(shù)f(x)=$\sqrt{2x-{x^2}}$的單調(diào)遞增區(qū)間是[0,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.函數(shù)y=2${\;}^{-{x^2}+2x+3}}$的值域為(0,16].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.函數(shù)f(x)=$\left\{\begin{array}{l}\frac{1}{x}(x>0).\\ ln|x|(x<0)\end{array}$的大致圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{4x}{{x}^{2}+1}$.
(1)求曲線f(x)上任意一點切線的斜率的取值范圍;
(2)當m滿足什么條件時,f(x)在區(qū)間(2m-1,m)為增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=2$\sqrt{3}$sin xcos x-3sin2x-cos2x+2.
(1)求f(x)的最大值;
(2)若△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且滿足$\frac{a}$=$\sqrt{3}$,sin(2A+C)=2sin A+2sin Acos(A+C),求f(B)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知直線y=kx+1,橢圓$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{20}$=1,試判斷直線與橢圓的位置關(guān)系( 。
A.相切B.相離C.相交D.相切或相交

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知向量$\overrightarrow{a},\overrightarrow,\overrightarrow{c}$,滿足|$\overrightarrow{a}$|=2,|$\overrightarrow$|=$\overrightarrow{a}•\overrightarrow$=3,若($\overrightarrow{c}$-2$\overrightarrow{a}$)•($\overrightarrow{c}$-$\frac{2}{3}$$\overrightarrow$)=0,則|$\overrightarrow-\overrightarrow{c}$|的最小值是(  )
A.2-$\sqrt{3}$B.2+$\sqrt{3}$C.1D.2

查看答案和解析>>

同步練習冊答案