如圖,在Rt△ABC中,已知BC=a,若長為2a的線段PQ以點A為中點,問的夾角θ取何值時,的值最大?并求出這個最大值.

答案:
解析:

解法2:以直角頂點A為坐標(biāo)原點,兩直角邊所在直線為坐標(biāo)軸建立如圖所示的平面直角坐標(biāo)系.


提示:

本題主要考查了平面向量數(shù)量積的運(yùn)算、向量垂直的條件、三角函數(shù)的性質(zhì)、以及數(shù)形結(jié)合的思想,解法1主要是應(yīng)用向量的數(shù)量積進(jìn)行變形,解法2主要是應(yīng)用坐標(biāo)法進(jìn)行運(yùn)算,兩種方法都很好,要注意體會.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,D為BC上一點,∠DAC=30°,BD=2,AB=2
3
,則AC的長為(  )
A、2
2
B、3
C、
3
D、
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線,交BC于點E.
(1)求證:點E是邊BC的中點;
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ABC=90°,BA=BC=2,AE⊥平面ABC,CD⊥平面ABC,CE交AD于點P.
(1)若AE=CD,點M為BC的中點,求證:直線MP∥平面EAB
(2)若AE=2,CD=1,求銳二面角E-BC-A的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8.如圖,在Rt△ABC中,∠CAB=90°,AB=2,AC=
2
2
.DO⊥AB于O點,OA=OB,DO=2,曲線E過C點,動點P在E上運(yùn)動,且保持|PA|+|PB|的值不變.
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求曲線E的方程;
(2)過D點的直線L與曲線E相交于不同的兩點M、N且M在D、N之間,設(shè)
DM
DN
=λ,試確定實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,AC=1,BC=x,D是斜邊AB的中點,將△BCD沿直線CD翻折,若在翻折過程中存在某個位置,使得CB⊥AD,則x的取值范圍是( 。
A、(0,
3
]
B、(
2
2
,2]
C、(
3
,2
3
]
D、(2,4]

查看答案和解析>>

同步練習(xí)冊答案