橢圓:
x2
a2
+
y2
b2
=1
(a>b>0),左右焦點(diǎn)分別是F1,F(xiàn)2,焦距為2c,若直線y=
3
(x+c)
與橢圓交于M點(diǎn),滿足∠MF1F2=2∠MF2F1,則離心率是( 。
A.
2
2
B.
3
-1
C.
3
-1
2
D.
3
2
∵橢圓的方程為
x2
a2
+
y2
b2
=1(a>b>0),作圖如右圖:
∵橢圓的焦距為2c,
∴直線y=
3
(x+c)經(jīng)過橢圓的左焦點(diǎn)F1(-c,0),又直線y=
3
(x+c)與橢圓交于M點(diǎn),
∴傾斜角∠MF1F2=60°,又∠MF1F2=2∠MF2F1
∴∠MF2F1=30°,
∴∠F1MF2=90°.
設(shè)|MF1|=x,則|MF2|=
3
x,|F1F2|=2c=2x,故x=c.
∴|MF1|+|MF2|=(
3
+1)x=(
3
+1)c,
又|MF1|+|MF2|=2a,
∴2a=(
3
+1)c,
∴該橢圓的離心率e=
c
a
=
2
3
+1
=
3
-1.
故選:B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓
x2
2
+
y2
m
=1
的離心率為
1
2
,則實(shí)數(shù)m等于( 。
A.
3
2
B.
3
8
C.
3
2
8
3
D.
3
8
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

F1、F2是橢圓
x2
9
+
y2
7
=1
的兩個(gè)焦點(diǎn),A為橢圓上一點(diǎn),且∠F1AF2=60°,則△F1AF2的面積為(  )
A.
7
3
3
B.
7
2
C.
7
4
D.
7
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓
x2
4
+y2=1
的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在橢圓上,若P,F(xiàn)1,F(xiàn)2是一個(gè)直角三角形的三個(gè)頂點(diǎn),則點(diǎn)P到x軸的距離為( 。
A.
1
2
B.
3
3
C.
1
2
3
3
D.以上均不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦點(diǎn)為F橢圓與過原點(diǎn)的直線交于A,B兩點(diǎn),連接AF,BF,若|AB|=26,|BF|=10,cos∠ABF=
5
13
,則橢圓的離心率為( 。
A.
5
13
B.
5
7
C.
13
17
D.
6
17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

以橢圓上任意一點(diǎn)與焦點(diǎn)所連接的線段為直徑的圓與以長(zhǎng)軸為直徑的圓的位置關(guān)系是( 。
A.相離B.相交C.內(nèi)切D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓
x2
4
+
y2
m
=1
的離心率e∈[
2
2
,1)
,則m的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓
x2
16
+
y2
12
=1
上一點(diǎn)P到焦點(diǎn)F1的距離等于3,那么點(diǎn)P到另一焦點(diǎn)F2的距離等于______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別是F1,F(xiàn)2,過F2作傾斜角為120°的直線與橢圓的一個(gè)交點(diǎn)為M,若MF1垂直于x軸,則橢圓的離心率為(  )
A.
12-2
3
11
B.2-
3
C.2(2-
3
D.
3
3

查看答案和解析>>

同步練習(xí)冊(cè)答案