11.已知y=f(x)的定義域為R的偶函數(shù),當x≥0時,f(x)=$\left\{\begin{array}{l}{\frac{5}{4}sin\frac{π}{4}x,0≤x≤2}\\{(\frac{1}{2})^{x}+1,x>2}\end{array}\right.$,若關于x的方程[f(x)]2+af(x)+b=0(a,b∈R)有且僅有6個不同的實數(shù)根,在實數(shù)a的取值范圍是(-$\frac{5}{2}$,-$\frac{9}{4}$)∪(-$\frac{9}{4}$,-1).

分析 根據(jù)函數(shù)的奇偶性作出函數(shù)f(x)的圖象,利用換元法判斷函數(shù)t=f(x)的根的個數(shù),利用數(shù)形結合即可得到結論.

解答 解:作出函數(shù)f(x)的圖象如圖:
則f(x)在(-∞,-2)和(0,2)上遞增,在(-2,0)和(2,+∞)上遞減,
當x=±2時,函數(shù)取得極大值f(2)=$\frac{5}{4}$;
當x=0時,取得極小值0.

要使關于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且只有6個不同實數(shù)根,
設t=f(x),則當t<0,方程t=f(x),有0個根,
當t=0,方程t=f(x),有1個根,
當0<t≤1或t=$\frac{5}{4}$,方程t=f(x),有2個根,
當1<t<$\frac{5}{4}$,方程t=f(x),有4個根,
當t>$\frac{5}{4}$,方程t=f(x),有0個根.
則t2+at+b=0必有兩個根t1、t2,
則有兩種情況符合題意:
①t1=$\frac{5}{4}$,且t2∈(1,$\frac{5}{4}$),
此時-a=t1+t2,
則a∈(-$\frac{5}{2}$,-$\frac{9}{4}$);
②t1∈(0,1],t2∈(1,$\frac{5}{4}$),
此時同理可得a∈(-$\frac{9}{4}$,-1),
綜上可得a的范圍是(-$\frac{5}{2}$,-$\frac{9}{4}$)∪(-$\frac{9}{4}$,-1),
故答案為(-$\frac{5}{2}$,-$\frac{9}{4}$)∪(-$\frac{9}{4}$,-1).

點評 本題主要考查分段函數(shù)的應用,利用換元法結合函數(shù)奇偶性的對稱性,利用數(shù)形結合是解決本題的關鍵.綜合性較強.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=x(x-a)(x-b).
(1)若a=0,b=3,求y=f(x)的切線中與y軸垂直的切線方程.
(2)若a=0,b=3,函數(shù)f(x)在(t,t+3)上既能取到極大值,又能取到極小值,求t的取值范圍;
(3)當a=0時,$\frac{f(x)}{x}$+lnx+1≥0對任意的x∈[$\frac{1}{2}$,+∞)恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.數(shù)列{an}滿足:a1=$\frac{4}{3}$,且an+1=$\frac{4(n+1){a}_{n}}{3{a}_{n}+n}$,(n∈N+),則$\frac{1}{{a}_{1}}$+$\frac{2}{{a}_{2}}$+$\frac{3}{{a}_{3}}$+…+$\frac{2016}{{a}_{2016}}$=$2015\frac{2}{3}+\frac{1}{3•{4}^{2016}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知直線l1:ax+4y-2=0直線l2:2x+y+2=0,且兩條直線互相垂直.
(1)直線l1與l2的交點坐標;
(2)已知圓C:x2+y2+6x+8y+21=0,判斷直線l1與圓C有無公共點,有幾個公共點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=ln(ax)-$\frac{x-a}{x}$(a>0)
(Ⅰ)若函數(shù)f(x)的最小值為2,求a的值;
(Ⅱ)當a=1時,是否存在過點(1,-1)的直線與函數(shù)y=f(x)的圖象相切?若存在,有多少條?若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,梯形ABCD中,AD∥BC,∠ABC=90°,AD=1,BC=2,∠DCB=60°,在平面ABCD內(nèi)過點C作l⊥CB,將梯形ABCD以l為軸旋轉(zhuǎn)一周
(1)求旋轉(zhuǎn)體的體積;
(2)求旋轉(zhuǎn)體的表面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知E(2,0),F(xiàn)(2,2)分別為正方形ABCD的邊AB與CD的中點.
(1)求正方形ABCD外接圓的方程;
(2)求對角線AC與BD所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.函數(shù)f(x)=|x|+$\frac{a}{x^2}$(其中a∈R)的圖象不可能是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知函數(shù)f(x)=1+2cosxcos(x+3φ)是偶函數(shù),其中φ∈(0,$\frac{π}{2}$),則下列關于函數(shù)g(x)=cos(2x-φ)的正確描述是(  )
A.g(x)在區(qū)間[-$\frac{π}{12},\frac{π}{3}$]上的最小值為-1.
B.g(x)的圖象可由函數(shù)f(x)向上平移2個單位,在向右平移$\frac{π}{3}$個單位得到.
C.g(x)的圖象可由函數(shù)f(x)的圖象先向左平移$\frac{π}{3}$個單位得到.
D.g(x)的圖象可由函數(shù)f(x)的圖象先向右平移$\frac{π}{3}$個單位得到.

查看答案和解析>>

同步練習冊答案