【題目】已知橢圓的左、右焦點(diǎn)分別為、,離心率,點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)設(shè)過點(diǎn)且不與坐標(biāo)軸垂直的直線交橢圓、兩點(diǎn),線段的垂直平分線與軸交于點(diǎn),求點(diǎn)的橫坐標(biāo)的取值范圍;

(3)在第(2)問的條件下,求面積的最大值.

【答案】(1);(2);(3).

【解析】試題分析:

(1)由題意求得,則橢圓方程為.

(2)將直線方程與橢圓方程聯(lián)立,整理可得 ,則的取值范圍為.

(3)面積公式: ,求導(dǎo)討論可得面積的最大值為.

試題解析:(1)點(diǎn)在且橢圓上, ,

, ,

, , 橢圓的方程為.

(2)設(shè)直線的方程為,

代入,整理得.

直線過橢圓的右焦點(diǎn) 方程有兩個不等實(shí)根.

, 中點(diǎn)

, ,

垂直平分線的方程為.

,得 .

, . 的取值范圍為.

(3)

,可得.

所以.

,所以.

所以的面積為.

設(shè),則.

可知在區(qū)間單調(diào)遞增,在區(qū)間單調(diào)遞減.

所以,當(dāng)時, 有最大值.

所以,當(dāng)時, 的面積有最大值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知甲、乙、丙、丁、戊、己等6人.(以下問題用數(shù)字作答)

(1)邀請這6人去參加一項(xiàng)活動,必須有人去,去幾人自行決定,共有多少種不同的情形?

(2)這6人同時加入6項(xiàng)不同的活動,每項(xiàng)活動限1人,其中甲不參加第一項(xiàng)活動,乙不參加第三項(xiàng)活動,共有多少種不同的安排方法?

(3)將這6人作為輔導(dǎo)員安排到3項(xiàng)不同的活動中,每項(xiàng)活動至少安排1名輔導(dǎo)員;求丁、戊、己恰好被安排在同一項(xiàng)活動中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】候鳥每年都要隨季節(jié)的變化而進(jìn)行大規(guī)模地遷徙,研究某種鳥類的專家發(fā)現(xiàn),該種鳥類的飛行速度v(單位:m/s)與其耗氧量Q之間的關(guān)系為:v=a+blog3 (其中a,b是實(shí)數(shù)).據(jù)統(tǒng)計(jì),該種鳥類在靜止的時候其耗氧量為30個單位,而其耗氧量為90個單位時,其飛行速度為1 m/s.

(1)求出a,b的值;

(2)若這種鳥類為趕路程,飛行的速度不能低于2 m/s,則其耗氧量至少要多少個單位?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線,曲線為參數(shù)), 以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.

1)求曲線的極坐標(biāo)方程;

2)若射線分別交兩點(diǎn), 求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(1)當(dāng)時,解不等式

(2)若,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市統(tǒng)計(jì)局就2015年畢業(yè)大學(xué)生的月收入情況調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖所示,每個分組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示.

(1)求畢業(yè)大學(xué)生月收入在的頻率;

(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);

(3)為了分析大學(xué)生的收入與所學(xué)專業(yè)、性別等方面的關(guān)系,必須按月收入再從這10000人中按分層抽樣方法抽出100人作進(jìn)一步分析,則月收入在的這段應(yīng)抽取多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

I)求證:當(dāng)時,不等式成立;

II)關(guān)于的不等式上恒成立,求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:的兩個焦點(diǎn)分別為,且橢圓經(jīng)過點(diǎn).

(1)求橢圓的離心率;

(2)過點(diǎn)的直線與橢圓相交于兩點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F(1,0),拋物線E:x2=2py的焦點(diǎn)為M.

(1)若過點(diǎn)M的直線l與拋物線C有且只有一個交點(diǎn),求直線l的方程;

(2)若直線MF與拋物線C交于A,B兩點(diǎn),求△OAB的面積.

查看答案和解析>>

同步練習(xí)冊答案