如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(1)求證:AF⊥平面CBF;
(2)設(shè)FC的中點(diǎn)為M,求證:OM∥平面DAF;
(3)設(shè)平面CBF將幾何體EFABCD分成的兩個(gè)錐體的體積分別為VF-ABCD,VF-CBE,求VF-ABCD:VF-CBE
【答案】分析:(1)可以先由平面ABCD⊥平面ABEF以及CB⊥AB證得CB⊥平面ABEF,⇒AF⊥CB.又因?yàn)锳B為圓O的直徑⇒AF⊥BF,就可證:AF⊥平面CBF;
(2)取DF的中點(diǎn)為N,利用MNAO⇒MNAO為平行四邊形⇒OM∥AN即可.既用線線平行來(lái)證線面平行.
(3)先把兩個(gè)錐體的體積套公式求出來(lái),就可求出其體積之比.
解答:解:(1)證明:由平面ABCD⊥平面ABEF,CB⊥AB,
平面ABCD∩平面ABEF=AB,
得CB⊥平面ABEF,
而AF?平面ABEF,所以AF⊥CB(2分)
又因?yàn)锳B為圓O的直徑,
所以AF⊥BF,(3分)
又BF∩CB=B,所以AF⊥平面CBF(4分)
(2)證明:設(shè)DF的中點(diǎn)為N,連接AN,MN
則MNCD,又AOCD
則MNAO,所以四邊形MNAO為平行四邊形,(6分)
所以O(shè)M∥AN,又AN?平面DAF,OM?平面DAF,
所以O(shè)M∥平面DAF.(8分)
(3)過(guò)點(diǎn)F作FG⊥AB于G,因?yàn)槠矫鍭BCD⊥平面ABEF,
所以FG⊥平面ABCD,所以(9分)
因?yàn)镃B⊥平面ABEF,
所以(11分)
所以VF-ABCD:VF-CBE=4:1.(12分)
點(diǎn)評(píng):本題是對(duì)立體幾何知識(shí)的綜合考查,涉及到線面垂直,線面平行和棱錐體積公式.是道綜合性極強(qiáng)的好題.在證明線面平行時(shí),其常用方法是在平面內(nèi)找已知直線平行的直線.當(dāng)然也可以用面面平行來(lái)推導(dǎo)線面平行.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
精英家教網(wǎng)
(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

(文科)如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)設(shè)FC的中點(diǎn)為M,求證:OM∥平面DAF.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年山東省濟(jì)南市高三12月質(zhì)量檢測(cè)數(shù)學(xué)文卷 題型:解答題

(本小題滿分12分)如圖,AB為圓O的直

徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD

所在的平面和圓O所在的平面垂直,且.

⑴求證:;

⑵設(shè)FC的中點(diǎn)為M,求證:

⑶設(shè)平面CBF將幾何體分成的兩個(gè)錐體的體積分別為,求的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.

(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

(文科)如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)設(shè)FC的中點(diǎn)為M,求證:OM∥平面DAF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年遼寧省錦州市高考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.

(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

(文科)如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)設(shè)FC的中點(diǎn)為M,求證:OM∥平面DAF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:陜西省寶雞中學(xué)2010屆高三適應(yīng)性訓(xùn)練(數(shù)學(xué)理) 題型:填空題

 A.(參數(shù)方程與極坐標(biāo))

直線與直線的夾角大小為         

 

B.(不等式選講)要使關(guān)于x的不等式在實(shí)數(shù)

范圍內(nèi)有解,則A的取值范圍是                  

C.(幾何證明選講) 如圖所示,在圓O中,AB是圓O的直

徑AB =8,E為OB.的中點(diǎn),CD過(guò)點(diǎn)E且垂直于AB,

EF⊥AC,則

CF•CA=            

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案