已知k=,試用k表示sinα-cosα的值.

答案:略
解析:

解:∵,

k=2sinαcosα

,


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
m
+
y2
n
=1
,常數(shù)m、n∈R+,且m>n.
(1)當(dāng)m=25,n=21時(shí),過橢圓左焦點(diǎn)F的直線交橢圓于點(diǎn)P,與y軸交于點(diǎn)Q,若
QF
=2
FP
,求直線PQ的斜率;
(2)過原點(diǎn)且斜率分別為k和-k(k≥1)的兩條直線與橢圓
x2
m
+
y2
n
=1
的交點(diǎn)為A、B、C、D(按逆時(shí)針順序排列,且點(diǎn)A位于第一象限內(nèi)),試用k表示四邊形ABCD的面積S;
(3)求S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C中心在坐標(biāo)原點(diǎn),離心率為
2
2
,左焦點(diǎn)為F1(-1,0).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過左焦點(diǎn)F1的直線l1,l2分別與橢圓相交于P、Q和M、N,若
PQ
MN
=0
,試用
直線l1的斜率k(k≠0)表示四邊形NQMP的面積S,求S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
y2
a2
+
x2
b2
=1(a
>b>0)的離心率為
2
2
,且橢圓上一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為2
2
.斜率為k(k≠0)的直線l過橢圓的上焦點(diǎn)且與橢圓相交于P,Q兩點(diǎn),線段PQ的垂直平分線與y軸相交于點(diǎn)M(0,m).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求m的取值范圍.
(3)試用m表示△MPQ的面積S,并求面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

已知k=,試用k表示sinαcosα的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案