設(shè)函數(shù),其中為已知實(shí)數(shù),,則下列各命題中錯(cuò)誤的是(  )

A.若,則對(duì)任意實(shí)數(shù)恒成立;

B.若,則函數(shù)為奇函數(shù);

C.若,則函數(shù)為偶函數(shù);

D.當(dāng)時(shí),若,則

 

【答案】

D

【解析】

試題分析:由函數(shù),可化簡(jiǎn)得:,則,則在中,若,則,即正確; 在中,若,則函數(shù),有是奇函數(shù),即正確; 在中,若,則函數(shù),有是偶函數(shù),即正確;在中,由不同時(shí)為,則函數(shù)的最小正周期為,若,則,即錯(cuò)誤.

考點(diǎn):1.三角化簡(jiǎn);2.函數(shù)的奇偶性;3.函數(shù)的同周期性

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)設(shè)函數(shù)f(x)=a1•sin(x+α1)+a2•sin(x+α2)+…+an•sin(x+αn),其中ai、αi(i=1,2,…,n,n∈N*,n≥2)為已知實(shí)常數(shù),x∈R.
下列關(guān)于函數(shù)f(x)的性質(zhì)判斷正確的命題的序號(hào)是
①②③④
①②③④

①若f(0)=f(
π
2
)=0
,則f(x)=0對(duì)任意實(shí)數(shù)x恒成立;
②若f(0)=0,則函數(shù)f(x)為奇函數(shù);
③若f(
π
2
)=0
,則函數(shù)f(x)為偶函數(shù);
④當(dāng)f2(0)+f2(
π
2
)≠0
時(shí),若f(x1)=f(x2)=0,則x1-x2=kπ(k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=a•sin(x+α1)+b•sin(x+α2),其中a,b,α1,α2為已知實(shí)常數(shù),下列關(guān)于函數(shù)f(x)的性質(zhì)判斷正確的命題的序號(hào)是
①②③
①②③

①若f(0)=f(
π
2
)=0
,則f(x)=0對(duì)任意實(shí)數(shù)x恒成立;
②若f(0)=0,則函數(shù)f(x)為奇函數(shù);
③若f(
π
2
)=0
,則函數(shù)f(x)為偶函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆上海市高三第一學(xué)期期中理科數(shù)學(xué)試卷 題型:填空題

設(shè)函數(shù),其中

)為已知實(shí)常數(shù),.

下列所有正確命題的序號(hào)是             . 

①若,則對(duì)任意實(shí)數(shù)恒成立;

②若,則函數(shù)為奇函數(shù);

③若,則函數(shù)為偶函數(shù);

④當(dāng)時(shí),若,則

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)函數(shù)f(x)=a•sin(x+α1)+b•sin(x+α2),其中a,b,α1,α2為已知實(shí)常數(shù),下列關(guān)于函數(shù)f(x)的性質(zhì)判斷正確的命題的序號(hào)是______.
①若f(0)=f(
π
2
)=0
,則f(x)=0對(duì)任意實(shí)數(shù)x恒成立;
②若f(0)=0,則函數(shù)f(x)為奇函數(shù);
③若f(
π
2
)=0
,則函數(shù)f(x)為偶函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年上海市六校高三(上)第一次聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

(理)設(shè)函數(shù)f(x)=a1•sin(x+α1)+a2•sin(x+α2)+…+an•sin(x+αn),其中ai、αi(i=1,2,…,n,n∈N*,n≥2)為已知實(shí)常數(shù),x∈R.
下列關(guān)于函數(shù)f(x)的性質(zhì)判斷正確的命題的序號(hào)是   
①若,則f(x)=0對(duì)任意實(shí)數(shù)x恒成立;
②若f(0)=0,則函數(shù)f(x)為奇函數(shù);
③若,則函數(shù)f(x)為偶函數(shù);
④當(dāng)時(shí),若f(x1)=f(x2)=0,則x1-x2=kπ(k∈Z).

查看答案和解析>>

同步練習(xí)冊(cè)答案