在圓(x-2+y2=內(nèi)隨機(jī)撒一粒芝麻,它落在曲線y=sinx,x∈[0,π]與x軸圍成的區(qū)域內(nèi)的概率為

[     ]

A.(3
B.
C.(2
D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:選擇題

已知F是橢圓C:+=1(a>b>0)的右焦點(diǎn),點(diǎn)P在橢圓C,線段PF與圓x-2+y2=相切于點(diǎn)Q,=2,則橢圓C的離心率等于(  )

(A) (B) (C) (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知圓C:(x+1)2+y2=r2(r為常數(shù),且r>2),定點(diǎn)B(1,0),A是圓C上的動點(diǎn),直線AC與線段AB的垂直平分線l相交于點(diǎn)M.當(dāng)點(diǎn)A在圓C上移動一周時,點(diǎn)M的軌跡記為曲線F.

(1)求曲線F的方程;

(2)求證:直線l與曲線F只有一個公共點(diǎn)M;

(3)若r=4,點(diǎn)M在第一象限,且,記直線l與直線CM的夾角為,

求tan

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知圓C:(x+1)2+y2=8,定點(diǎn)A(1,0),M為圓上一動點(diǎn),點(diǎn)P在AM上,點(diǎn)N在CM上,且滿足=2,·=0,點(diǎn)N的軌跡為曲線E.

(1)求曲線E的方程;

(2)過點(diǎn)A且傾斜角是45°的直線l交曲線E于兩點(diǎn)H、Q,求|HQ|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-1)2+y2=r2(r>1),設(shè)M為圓C與x軸負(fù)半軸的交點(diǎn),過點(diǎn)M作圓C的弦MN,并使它的中點(diǎn)P恰好落在y軸上.

(1)當(dāng)r=2時,求滿足條件的P點(diǎn)的坐標(biāo);

(2)當(dāng)r∈(1,+∞)時,求點(diǎn)N的軌跡E的方程;

(3)若A(x1,2)、B(x2,y2)、C(x0,y0)是E上不同的點(diǎn),且AB⊥BC,求y0的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案