【題目】數(shù)列{an}定義為a1>0,a11=a,an+1=an+ an2 , n∈N*
(1)若a1= (a>0),求 + +…+ 的值;
(2)當a>0時,定義數(shù)列{bn},b1=ak(k≥12),bn+1=﹣1+ ,是否存在正整數(shù)i,j(i≤j),使得bi+bj=a+ a2+ ﹣1.如果存在,求出一組(i,j),如果不存在,說明理由.

【答案】
(1)解:∵ ,

,

;


(2)由

兩邊平方得

,

當b1=ak時,由 ,

,數(shù)列{an}遞增,

故b2=ak﹣1,

類似地,b3=ak﹣2,…,bt=ak﹣t+1

, , ,

bi+bj=a10+a12

∴ak﹣i+1+ak﹣j+1=a10+a12,

存在正整數(shù)i,j(i≤j),k﹣i+1=12,k﹣j+1=10i=k﹣11,j=k﹣9,

存在一組(i,j)=(k﹣11,k﹣9).


【解析】(1)化簡遞推公式利用裂項相消法求出數(shù)列的和。(2)由已知遞推關系可得到=,而故代入可推出b2=ak﹣1,從而可得b3=ak﹣2,…,bt=ak﹣t+1,進而可得ak﹣i+1+ak﹣j+1=a10+a12 即得出結論。
【考點精析】本題主要考查了數(shù)列的通項公式的相關知識點,需要掌握如果數(shù)列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點P是拋物線x2=4y上的動點,點P在x軸上的射影是Q,點A(8,7),則|PA|+|PQ|的最小值為(
A.7
B.8
C.9
D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= 滿足對任意x1≠x2 , 都有 <0成立,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知n∈N* , Sn=(n+1)(n+2)…(n+n),
(Ⅰ)求 S1 , S2 , S3 , T1 , T2 , T3;
(Ⅱ)猜想Sn與Tn的關系,并用數(shù)學歸納法證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正四面體ABCD的頂點C在平面α內(nèi),且直線BC與平面α所成角為15°,頂點B在平面α上的射影為點O,當頂點A與點O的距離最大時,直線CD與平面α所成角的正弦值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足a2=1,|an+1﹣an|= ,若a2n+1>a2n﹣1 , a2n+2<a2n(n∈N+)則數(shù)列{(﹣1)nan}的前40項的和為(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù) 的圖象向右平移 個單位,再把所有的點的橫坐標縮短到原來的 倍(縱坐標不變),得到函數(shù)y=g(x)的圖象,則圖象y=g(x)的一個對稱中心為(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】來自某校一班和二班的共計9名學生志愿服務者被隨機平均分配到運送礦泉水、清掃衛(wèi)生、維持秩序這三個崗位服務,且運送礦泉水崗位至少有一名一班志愿者的概率是
(1)求清掃衛(wèi)生崗位恰好一班1人、二班2人的概率;
(2)設隨機變量X為在維持秩序崗位服務的一班的志愿者的人數(shù),求X分布列及期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)= 其中t>0,若函數(shù)g(x)=f[f(x)﹣1]有6個不同的零點,則實數(shù)t的取值范圍是

查看答案和解析>>

同步練習冊答案