2.在銳角△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,已知$\frac{\sqrt{3}}{3}$sin2C+cos(A+B)=0.
(Ⅰ)求C;
(Ⅱ)若a=4$\sqrt{3}$sinA,求△ABC面積的最大值.

分析 (Ⅰ)先根據(jù)二倍角公式和誘導公式即可求出sinC=$\frac{\sqrt{3}}{2}$,問題得以解決,
(Ⅱ)根據(jù)正弦定理和余弦定理和基本不等式求出ab≤36,再根據(jù)面積公式計算即可

解答 解:(Ⅰ)由$\frac{\sqrt{3}}{3}$sin2C+cos(A+B)=0,得$\frac{2\sqrt{3}}{3}$sinCcosC-cosC=0.
∵C為銳角,
∴cosC>0,
∴sinC=$\frac{\sqrt{3}}{2}$,
∴C=$\frac{π}{3}$;
(Ⅱ)由正弦定理可得$\frac{c}{sinC}$=$\frac{a}{sinA}$=4$\sqrt{3}$,
∴c=4$\sqrt{3}$×$\frac{\sqrt{3}}{2}$=6,
由余弦定理可得36=a2+b2-2ab×$\frac{1}{2}$,
∴36=a2+b2-ab≥2ab-ab=ab,當且僅當a=b時取等號,
∴S△ABC=$\frac{1}{2}$absinC=$\frac{\sqrt{3}}{4}$ab≤$\frac{\sqrt{3}}{4}$×36=9$\sqrt{3}$,
故△ABC面積的最大值為9$\sqrt{3}$.

點評 本題考查了三角函數(shù)的化簡和正弦定理余弦定理和三角形的面積公式,考查了學生的運算能力,屬于中檔題

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知λ∈R,函數(shù)f(x)=ex-ex-λ(xlnx-x+1)的導數(shù)為g(x).
(1)求曲線y=f(x)在x=1處的切線方程;
(2)若函數(shù)g(x)存在極值,求λ的取值范圍;
(3)若x≥1時,f(x)≥0恒成立,求λ的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.某品牌洗衣機專柜在國慶期間舉行促銷活動,莖葉圖1中記錄了每天的銷售量(單位:臺),把這些數(shù)據(jù)經(jīng)過如圖2所示的程序框圖處理后,輸出的S=( 。
A.196B.203C.28D.29

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.現(xiàn)有排成一列的5個花盆,要將甲、乙兩種花種在其中的2個花盆里(每個花盆種一種花),若要求每相鄰的3個花盆里至少有一種花,則這樣的不同的種法數(shù)是14(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知函數(shù)f(x)=$\frac{lnx}{x}$,f′(x)為f(x)的導函數(shù),則f′(1)的值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知全集U={x∈N|x≤4},A={0,1,3},B={1,3,4},則∁U(A∩B)=( 。
A.{2}B.{4}C.{2,4}D.{0,2,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.平面內(nèi)三點A,B,C滿足|$\overrightarrow{BA}$|=3,|$\overrightarrow{BC}$|=4,$\overrightarrow{BA}$$•\overrightarrow{BC}$=0,M,N為平面內(nèi)的動點,且$\overrightarrow{AM}$為單位向量,若$\overrightarrow{MC}$=2$\overrightarrow{MN}$,則|$\overrightarrow{BN}$|的最大值與最小值的和為( 。
A.10B.8C.7D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}1-|x+1|,x<1\\{x^2}-4x+2,x≥1\end{array}$,則函數(shù)g(x)=2|x|f(x)-2的零點個數(shù)為(  )個.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.集合A={x|y=ln(1-x)},B={x|x2-2x-3≤0},全集U=A∪B,則∁U(A∩B)=( 。
A.{x|x<-1或x≥1}B.{x|1≤x≤3或x<-1}C.{x|x≤-1或x>1}D.{x|1<x≤3或x≤-1}

查看答案和解析>>

同步練習冊答案