A={x|
x+2x
≥0},B={x|3-x≥1}
,則A∩B=
{x|x≤-2}
{x|x≤-2}
分析:先通過(guò)解不等式分別求出結(jié)合A,B,再結(jié)合交集的定義即可得到答案.
解答:解:∵A={x|
x+2
x
≥0},B={x|3-x≥1}

∴A={x|x>0或x≤-2}
B={x|3-x≥30}={x|x≤0}.
∴A∩B={x|x≤-2}.
故答案為:{x|x≤-2}.
點(diǎn)評(píng):本題主要是在求解不等公式的基礎(chǔ)上考查集合的交集運(yùn)算.是對(duì)基礎(chǔ)知識(shí)的綜合考查,屬于基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U=R,非空集合A={x|
x-2
x-(3a+1)
<0},B={x|
x-a2-2
x-a
<0}.
(Ⅰ)當(dāng)a=
1
2
時(shí),求(?UB∩A);
(Ⅱ)命題p:x∈A,命題q:x∈B,若q是p的必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a
=(2x,1,3),
b
=(1,-2y,9),如果
a
b
為共線向量,則( 。
A、x=1,y=1
B、x=
1
2
,y=-
1
2
C、x=
1
6
,y=-
3
2
D、x=-
1
6
,y=
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若A={x|ax2+2x+1=0,x∈R}中只含有一個(gè)元素,則a=
0或1
0或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

仔細(xì)閱讀下面問(wèn)題的解法:
設(shè)A=[0,1],若不等式21-x-a>0在A上有解,求實(shí)數(shù)a的取值范圍.
解:由已知可得  a<21-x
令f(x)=21-x,不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值
又f(x)在[0,1]上單調(diào)遞減,f(x)max=f(0)=2
∴a<2即為所求.
學(xué)習(xí)以上問(wèn)題的解法,解決下面的問(wèn)題:
(1)已知函數(shù)f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數(shù)及反函數(shù)的定義域A;
(2)對(duì)于(1)中的A,設(shè)g(x)=
10-x
10+x
x∈A,試判斷g(x)的單調(diào)性;(不證)
(3)又若B={x|
10-x
10+x
>2x+a-5},若A∩B≠Φ,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案