【答案】
分析:(1)、賦值x=-3,又因為f(x)是R上的偶函數(shù),f(3)=0.
(2)、f(x)是R上的偶函數(shù),所以f(x+6)=f(-x),又因為f (x+6)=f (x),得周期為6,
從而f(-6-x)=f(-6+x),所以直線x=-6是函數(shù)y=f(x)的圖象的一條對稱軸
(3)、有單調(diào)性定義知函數(shù)y=f(x)在[0,3]上為增函數(shù),f(x)的周期為6,所以函數(shù)y=f(x)在[-9,-6]上為減函數(shù).
(4)、f(3)=0,f(x)的周期為6,所以:f(-9)=f(-3)=f(3)=f(9)=0.
解答:解:①:對于任意x∈R,都有f (x+6)=f (x)+f (3)成立,令x=-3,則f(-3+6)=f(-3)+f (3),又因為f(x)是R上的偶函數(shù),所以f(3)=0.
②:由(1)知f (x+6)=f (x),所以f(x)的周期為6,
又因為f(x)是R上的偶函數(shù),所以f(x+6)=f(-x),
而f(x)的周期為6,所以f(x+6)=f(-6+x),f(-x)=f(-x-6),
所以:f(-6-x)=f(-6+x),所以直線x=-6是函數(shù)y=f(x)的圖象的一條對稱軸.
③:當x
1,x
2∈[0,3],且x
1≠x
2時,都有
所以函數(shù)y=f(x)在[0,3]上為增函數(shù),
因為f(x)是R上的偶函數(shù),所以函數(shù)y=f(x)在[-3,0]上為減函數(shù)
而f(x)的周期為6,所以函數(shù)y=f(x)在[-9,-6]上為減函數(shù).
④:f(3)=0,f(x)的周期為6,
所以:f(-9)=f(-3)=f(3)=f(9)=0
函數(shù)y=f(x)在[-9,9]上有四個零點.
故答案為:①②④.
點評:本題重點考查函數(shù)性質(zhì)的應(yīng)用,用到了單調(diào)性,周期性,奇偶性,對稱軸還有賦值法求函數(shù)值.