設(shè)x>0,y>0且x≠y,求證:(x3+y3)13

答案:
解析:

  證明:∵x>0,y>0,欲證成立,

  只需證明(x3+y3)2<(x2+y2)3,

  即證2x3y3<3x2y2(x2+y2),

  只需證明2xy<3(x2+y2).

  ∵x>0,y>0,x≠y,

  ∴x2+y2>2xy.

  ∴3(x2+y2)>6xy>2xy成立.

  故(成立.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x>0,y>0且x+2y=1,求
1
x
+
1
y
的最小值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x>0,y>0且x≠y,比較 
x2
y2
+
y2
x2
x
y
+
y
x
的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求
2x-1
3x+1
>0
的解集
(2)設(shè)x>0,y>0且x+y=1,求
2
x
+
1
y
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x>0,y>0且x+y=1,則
8
x
+
8
y
最小值為
32
32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x>0,y>0且x+y=1,則
1
x
+
4
y
的最小值為
9
9

查看答案和解析>>

同步練習(xí)冊(cè)答案