分析 (1)利用圓的到直線的距離與半徑,弦長(zhǎng)的關(guān)系求解即可.
(2)設(shè)出直線方程,利用圓心到直線的距離列出方程求解即可.
解答 解:(1)圓心到直線的距離d=$\frac{2}{\sqrt{2}}$=$\sqrt{2}$,
∴|AB|=2$\sqrt{4-2}$=2$\sqrt{2}$.
(2)當(dāng)過(guò)點(diǎn)M的直線的斜率存在時(shí),設(shè)其方程為y-3=k(x-3),即kx-y-3k+3=0,
∵圓心(1,0)到切線l的距離等于半徑2,
∴$\frac{|-2k+3|}{\sqrt{1+{k}^{2}}}$=2,解得k=$\frac{5}{12}$,
∴切線方程為y-3=$\frac{5}{12}$(x-3),即5x-12y+21=0,
當(dāng)過(guò)點(diǎn)M的直線的斜率不存在時(shí),其方程為x=3,圓心(1,0)到此直線的距離等于半徑2,
故直線x=3也適合題意.
所以,所求的直線l的方程是5x-12y+21=0或x=3.
點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系的綜合應(yīng)用,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $[{-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}}]$ | B. | $[{-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}}]$ | C. | $[-\sqrt{3},\sqrt{3}]$ | D. | $({-\sqrt{2},\sqrt{2}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a2>b2 | B. | $\frac{1}$>$\frac{1}{a}$ | C. | lg a>lg b | D. | ($\frac{1}{3}$)b>($\frac{1}{3}$)a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{16}{3}$ | B. | $\frac{10}{3}$ | C. | $\frac{8}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{4}{3}$ | C. | $\frac{8}{3}$ | D. | $\frac{10}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com