如圖,60°的二面角的棱上有A、B兩點(diǎn),線段AC、BD分別在這個(gè)二面角的兩個(gè)半平面內(nèi),且都垂直于AB,已知AB=4,AC=6,BD=8,則CD的長為(  )
分析:由已知可得
CD
=
CA
+
AB
+
BD
,利用數(shù)量積的性質(zhì)即可得出.
解答:解:∵CA⊥AB,BD⊥AB,∴
CA•
AB
=
BD
AB
=0

AC
,
BD
>=60°
,∴
CA
,
BD
>=120°

CD
=
CA
+
AB
+
BD
,
CD
2
=
CA
2
+
AB
2
+
BD
2
+
2
CA
AB
+2
CA
BD
+2
AB
BD

=62+42+82+0+2×6×8×cos120°+0
=68.
|
CD
|=2
17

故選A.
點(diǎn)評:熟練掌握向量的運(yùn)算和數(shù)量積運(yùn)算是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

 如圖,60°的二面角的棱上有A、B兩點(diǎn),直線AC、BD分別在這個(gè)二面角的兩個(gè)半平面內(nèi),且都垂直AB,已知AB=4,AC=6,BD=8,求CD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在60°的二面角α-AB-β內(nèi),ACβ,BDα,ACABA,BDABB,且AC=AB=BD=1,則CD的長為… (  )

A.3                              B.                                 C.2                              D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,60°的二面角的棱上有A、B兩點(diǎn),直線AC、BD分別在這個(gè)二面角的兩個(gè)半平面內(nèi),且都垂直AB,已知AB=4,AC=6,BD=8,求CD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

 如圖,60°的二面角的棱上有A、B兩點(diǎn),直線AC、BD分別在這個(gè)二面角的兩個(gè)半平面內(nèi),且都垂直AB,已知AB=4,AC=6,BD=8,求CD的長.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案