(2010•福建模擬)為了解某地居民的月收入情況,一個社會調(diào)查機(jī)構(gòu)調(diào)查了20000人,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖,如圖.現(xiàn)按月收入分層,用分層抽樣的方法在這20000人中抽出200人作進(jìn)一步調(diào)查,則月收入在[1500,2000)(單位:元)的應(yīng)抽取
40
40
人.
分析:先有頻率分布直方圖求出在(1500,2000元/月)收入段的頻率,根據(jù)分層抽樣的規(guī)則,用此頻率乘以樣本容量計算出應(yīng)抽人數(shù)
解答:解:由圖(1500,2000元/月)收入段的頻率是0.0004×500=0.2
故用分層抽樣方法抽出200人作進(jìn)一步調(diào)查,則在(1500,2000元/月)收入段應(yīng)抽出人數(shù)為0.2×200=40
故答案為40
點評:本題考查頻率分布直方圖與分層抽樣的規(guī)則,解題的關(guān)鍵是從直方圖中求得相應(yīng)收入段的頻率,再根據(jù)分層抽樣的規(guī)則計算出樣本中本收入段應(yīng)抽的人數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010•福建模擬)考察等式:
C
0
m
C
r
n-m
+
C
1
m
C
r-1
n-m
+…+
C
r
m
C
0
n-m
=
C
r
n
(*),其中n、m、r∈N*,r≤m<n且r≤n-m.某同學(xué)用概率論方法證明等式(*)如下:
設(shè)一批產(chǎn)品共有n件,其中m件是次品,其余為正品.現(xiàn)從中隨機(jī)取出r件產(chǎn)品,
記事件Ak={取到的r件產(chǎn)品中恰有k件次品},則P(Ak)=
C
k
m
C
r-k
n-m
C
r
n
,k=0,1,2,…,r.
顯然A0,A1,…,Ar為互斥事件,且A0∪A1∪…∪Ar=Ω(必然事件),
因此1=P(Ω)=P(A0)+P(A1)+…P(Ar)=
C
0
m
C
r
n-m
+
C
1
m
C
r-1
n-m
+…+
C
r
m
C
0
n-m
C
r
n
,
所以
C
0
m
C
r
n-m
+
C
1
m
C
r-1
n-m
+…+
C
r
m
C
0
n-m
=
C
r
n
,即等式(*)成立.
對此,有的同學(xué)認(rèn)為上述證明是正確的,體現(xiàn)了偶然性與必然性的統(tǒng)一;但有的同學(xué)對上述證明方法的科學(xué)性與嚴(yán)謹(jǐn)性提出質(zhì)疑.現(xiàn)有以下四個判斷:
①等式(*)成立  ②等式(*)不成立  ③證明正確  ④證明不正確
試寫出所有正確判斷的序號
①③
①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•福建模擬)已知函數(shù)f(x)=(ax2+bx+c)ex在x=1處取得極小值,其圖象過點A(0,1),且在點處切線的斜率為-1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)設(shè)函數(shù)g(x)的定義域D,若存在區(qū)間[m,n]⊆D,使得g(x)在[m,n]上的值域也是[m,n],則稱區(qū)間[m,n]為函數(shù)g(x)的“保值區(qū)間”.
(ⅰ)證明:當(dāng)x>1時,函數(shù)f(x)不存在“保值區(qū)間”;
(ⅱ)函數(shù)f(x)是否存在“保值區(qū)間”?若存在,寫出一個“保值區(qū)間”(不必證明);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•福建模擬)選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點O為極點,沿x軸的正半軸為極軸建立極坐標(biāo)系.曲線C的極坐標(biāo)方程是ρ=4cosθ,直線l的參數(shù)方程是
x=-3+
3
2
t
y=
1
2
t
(t為參數(shù)),M、N分別為曲線C、直線l上的動點,求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•福建模擬)某運動項目設(shè)置了難度不同的甲、乙兩個系列,每個系列都有K和D兩個動作.比賽時每位運動員自選一個系列完成,兩個動作得分之和為該運動員的成績.假設(shè)每個運動員完成每個系列的兩個動作的得分是相互獨立的.根據(jù)賽前訓(xùn)練的統(tǒng)計數(shù)據(jù),某運動員完成甲系列和乙系列動作的情況如下表:
表1:甲系列
動作 K動作 D動作
得分 100 80 40 1-
概率
3
4
1
4
3
4
1
4
表2:乙系列
動作 K動作 D動作
得分 90 50 20 0
概率
9
10
1
10
9
10
1
10
現(xiàn)該運動員最后一個出場,之前其他運動員的最高得分為115分
(Ⅰ)若該運動員希望獲得該項目的第一名,應(yīng)選擇哪個系列?說明理由,并求其獲得第一名的概率;
(Ⅱ)若該運動員選擇乙系列,求其成績ξ的分布列及其數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•福建模擬)今有甲、乙、丙、丁四人通過“拔河”進(jìn)行“體力”較量.當(dāng)甲、乙兩人為一方,丙、丁兩人為另一方時,雙方勢均力敵;當(dāng)甲與丙對調(diào)以后,甲、丁一方輕而易舉地戰(zhàn)勝了乙、丙一方;而乙憑其一人之力便戰(zhàn)勝了甲、丙兩人的組合.那么,甲、乙、丙、丁四人的“體力”由強(qiáng)到弱的順序是( 。

查看答案和解析>>

同步練習(xí)冊答案