直線y=k(x-1)與雙曲線x2-y2=4沒有公共點(diǎn),則k的取值范圍是
 
分析:將直線方程代入雙曲線方程,化為關(guān)于x的方程,利用方程的判別式小于0,即可求得k的取值范圍.
解答:解:由題意,直線y=k(x-1)代入雙曲線x2-y2=4方程,可得x2-[k(x-1)]2=4
∴(1-k2)x2+2k2x-k2-4=0
∵直線y=k(x-1)與雙曲線x2-y2=4沒有公共點(diǎn),
∴△=4k4-4(1-k2)(-k2-4)<0
∴2k4+3k2-4<0,
∴(k2+2)(2k2-1)<0,
-
2
2
<k<
2
2

故答案為:-
2
2
<k<
2
2
點(diǎn)評:本題考查直線與雙曲線的位置關(guān)系,解題的關(guān)鍵是將兩曲線有交點(diǎn)的問題轉(zhuǎn)化為方程有根的問題,這是研究兩曲線有交點(diǎn)的問題時(shí)常用的轉(zhuǎn)化方向.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x-[x],x≥0
f(x+1),x<0
其中[x]表示不超過x的最大整數(shù),如[-1.5]=-2,[1.5]=1,若直線y=k(x+1)(k>0)與函數(shù)y=f(x)的圖象有三個(gè)不同的交點(diǎn),則k的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=2+
3+2x-x2
與直線y=k(x-1)+5有兩個(gè)不同交點(diǎn)時(shí),實(shí)數(shù)k的取值范圍是
(
5
2
,
3
2
]∪[-
3
2
,-
5
2
)
(
5
2
,
3
2
]∪[-
3
2
,-
5
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
6
3
,橢圓短軸長為
2
15
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)已知?jiǎng)又本y=k(x+1)與橢圓C相交于A、B兩點(diǎn).
①若線段AB中點(diǎn)的橫坐標(biāo)為-
1
2
,求斜率k的值;
②若點(diǎn)M(-
7
3
,0),求證:
MA
MB
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面內(nèi)兩定點(diǎn)F1(0,-
5
)、F2(0,
5
)
,動(dòng)點(diǎn)P滿足條件:|
PF1
|-|
PF2
|=4
,設(shè)點(diǎn)P的軌跡是曲線E,O為坐標(biāo)原點(diǎn).
(I)求曲線E的方程;
(II)若直線y=k(x+1)與曲線E相交于兩不同點(diǎn)Q、R,求
OQ
OR
的取值范圍;
(III)(文科做)設(shè)A、B兩點(diǎn)分別在直線y=±2x上,若
AP
PB
(λ∈[
1
2
,3])
,記xA、xB分別為A、B兩點(diǎn)的橫坐標(biāo),求|xA•xB|的最小值.
(理科做)設(shè)A、B兩點(diǎn)分別在直線y=±2x上,若
AP
PB
(λ∈[
1
2
,3])
,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•虹口區(qū)二模)已知:曲線C上任意一點(diǎn)到點(diǎn)F(1,0)的距離與到直線x=-1的距離相等.
(1)求曲線C的方程;
(2)如果直線y=k(x-1)交曲線C于A、B兩點(diǎn),是否存在實(shí)數(shù)k,使得以AB為直徑的圓經(jīng)過原點(diǎn)O?若存在,求出k的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案