設(shè)數(shù)列{an}的首項(xiàng)a1=-9,且滿足an+1=an+2,則|a1|+|a2|+…+|a20|=
 
考點(diǎn):數(shù)列的求和,等差數(shù)列的前n項(xiàng)和,數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:由已知條件推導(dǎo)出{an}是首項(xiàng)為-9,公差為2的等差數(shù)列,由此能求出|a1|+|a2|+…+|a20|的值.
解答: 解:∵數(shù)列{an}的首項(xiàng)a1=-9,且滿足an+1=an+2,
∴{an}是首項(xiàng)為-9,公差為2的等差數(shù)列,
∴an=-9+(n-1)×2=2n-11,
由an=2n-11≥0,得n
11
2
,
a5=2×5-11=-1,a6=2×6-11=1,
∴|a1|+|a2|+…+|a20|=S20-2S5
=20×(-9)+
20×19
2
×2
-2[5×(-9)+
5×4
2
×2
]
=250.
故答案為:250.
點(diǎn)評(píng):本題考查數(shù)列的前20項(xiàng)的絕對(duì)值的和的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某廠生產(chǎn)一種儀器,由于受生產(chǎn)能力與技術(shù)水平的限制,會(huì)產(chǎn)生一些次品.根據(jù)經(jīng)驗(yàn)知道,該廠生產(chǎn)這種儀器,次品率p與日產(chǎn)量x(件)(x∈N*)之間大體滿足如框圖所示的關(guān)系(注:次品率P=
次品數(shù)
生產(chǎn)量
).又已知每生產(chǎn)一件合格的儀器可以盈利A(元),但每生產(chǎn)一件次品將虧損
A
2
(元).(其中c為小于96的常數(shù))
(1)若c=50,當(dāng)x=46 時(shí),求次品率P;
(2)求日盈利額T(元)與日產(chǎn)量x(件)(x∈N*)的函數(shù)關(guān)系;
(3)當(dāng)日產(chǎn)量為多少時(shí),可獲得最大利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)學(xué)校高三年級(jí)共有學(xué)生600人,其中男生有360人,女生有240人,為了調(diào)查高三學(xué)生的復(fù)習(xí)狀況,用分層抽樣的方法從全體高三學(xué)生中抽取一個(gè)容量為50的樣本,應(yīng)抽取女生
 
人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列敘述中,正確的有
 
(填序號(hào))
①因?yàn)镻∈α,Q∈α,所以PQ∈α;      
②因?yàn)镻∈α,Q∈β,所以α∩β=PQ;
③因?yàn)锳B⊆α,C∈AB,D∈AB,所以CD⊆α;
④因?yàn)锳B⊆α,AB⊆β,所以A∈(α∩β)且B∈(α∩β)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知直線ρ(
2
cosθ-sinθ)-a=0與曲線
x=sinθ+cosθ
y=1+sin2θ
(θ為參數(shù))有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
16
+
y2
25
=1的焦點(diǎn)分別是F1,F(xiàn)2,P是橢圓上一點(diǎn),若連接F1,F(xiàn)2,P三點(diǎn)恰好能構(gòu)成直角三角形,則點(diǎn)P到y(tǒng)軸的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:
sin(
π
2
+α)tan(π-α)
cos(
π
2
-α)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠用A,B,C三種原料生產(chǎn)甲、乙兩種產(chǎn)品,現(xiàn)有A,B,C三種原料分別為8噸、10噸、11噸;每生產(chǎn)一噸甲產(chǎn)品需要1噸A原料、2噸B原料、1噸C原料,可獲利3萬元;每生產(chǎn)一噸乙產(chǎn)品需要2噸A原料、1噸B原料、3噸C原料,可獲利2萬元;則該工廠最大可獲利
 
萬元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(2,-1,3),
b
=(-1,4,-2),
c
=(4,5,x),若
a
、
b
c
三向量共面,則|
c
|=(  )
A、5
B、6
C、
66
D、
41

查看答案和解析>>

同步練習(xí)冊(cè)答案