設(shè)f(x)=x3+ax2+bx+1的導(dǎo)數(shù)f′(x)滿足f′(1)=2a,f′(2)=-b,其中常數(shù)a,b∈R.
(1)求a,b的值.
(2)設(shè)g(x)=
f′(x)
ex
,求函數(shù)g(x)的極值.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值,導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)根據(jù)已知中f(x)=x3+ax2+bx+1,我們根據(jù)求函數(shù)導(dǎo)函數(shù)的公式,易求出導(dǎo)數(shù)f′(x),結(jié)合f′(1)=2a,f′(2)=-b,能求出a,b的值.
(2)根據(jù)g(x)=f′(x)e-1求出函數(shù)g(x)的解析式,然后求出g(x)的導(dǎo)數(shù)g′(x)的解析式,求出導(dǎo)函數(shù)零點(diǎn)后,利用零點(diǎn)分段法,分類討論后,即可得到函數(shù)g(x)的極值.
解答: 解:(1)∵f(x)=x3+ax2+bx+1,
∴f′(x)=3x2+2ax+b.
令x=1,得f′(1)=3+2a+b=2a,解得b=-3
令x=2,得f′(2)=12+4a+b=-b,
因此12+4a+b=-b,解得a=-
3
2

(2)由(1)知g(x)=(3x2-3x-3)e-x
從而有g(shù)′(x)=(-3x2+9x)e-x
令g′(x)=0,則x=0或x=3
∵當(dāng)x∈(-∞,0)時(shí),g′(x)<0,
當(dāng)x∈(0,3)時(shí),g′(x)>0,
當(dāng)x∈(3,+∞)時(shí),g′(x)<0,
∴g(x)=(3x2-3x-3)e-x在x=0時(shí)取極小值g(0)=-3,
在x=3時(shí)取極大值g(3)=15e-3
點(diǎn)評(píng):本題考查函數(shù)的極大值和極小值的求法,考查實(shí)數(shù)的取值范圍的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題錯(cuò)誤的是( 。
A、若p∨q為假命題,則p,q均為假命題
B、若X~N(10,4),且P(X>12)=0.1585,則P(X>8)=0.8415
C、將函數(shù)y=cos2x的圖象向左平移
π
3
個(gè)單位得函數(shù)y=sin(2x+
π
6
)的圖象
D、在△ABC中“△ABC為銳角三角形”是“cosA<sinB”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx在x=1處有極大值2.
(1)求f(x)的解析式;
(2)求f(x)在區(qū)間[-
3
,3]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是等差數(shù)列,其前n項(xiàng)和為Sn,{bn}是等比數(shù)列,且a1=b1=2,a4+b4=27,S4-b4=10.
(Ⅰ)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(Ⅱ)求Tn=a1b1+a2b2+…+anbn,n∈N+的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某高校在2014年自主招生考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),按成績(jī)分組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100]得到的頻率分布直方圖如圖所示.
(1)分別求第3,4,5組的頻率;
(2)若該校決定在筆試成績(jī)較高的第3,4,5組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,
(ⅰ)已知學(xué)生甲和學(xué)生乙的成績(jī)均在第三組,求學(xué)生甲和學(xué)生乙恰有一人進(jìn)入第二輪面試的概率;
(ⅱ)學(xué)校決定在這已抽取到的6名學(xué)生中隨機(jī)抽取2名學(xué)生接受考官L的面試,設(shè)第4組中有ξ名學(xué)生被考官L面試,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題P:函數(shù)f(x)=(2a-5)x是R上的減函數(shù).命題Q:在x∈R時(shí),不等式x2-ax+2>0恒成立.若命題“P∪Q”是真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面直角坐標(biāo)系內(nèi),已知?jiǎng)狱c(diǎn)A,B分別在x,y軸上,|AB|=3,點(diǎn)M滿足
BM
=
2
3
BA
,M點(diǎn)的軌跡記作C.
(Ⅰ)求C的方程;
(Ⅱ)若直線AB與軌跡C只有一個(gè)公共點(diǎn),求該公共點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在圓O:x2+y2=4上任取一點(diǎn)P,過點(diǎn)P作y軸的垂線段PD,D為垂足.當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),線段PD的中點(diǎn)M形成軌跡C.
(1)求軌跡C的方程;
(2)若直線y=x與曲線C交于AB兩點(diǎn),Q為曲線C上一動(dòng)點(diǎn),求△ABQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(x+
1+x2
),
(Ⅰ)判斷并證明函數(shù)y=f(x)的奇偶性;
(Ⅱ)判斷并證明函數(shù)y=f(x)在R上的單調(diào)性;
(Ⅲ)當(dāng)x∈[1,2]時(shí),不等式f(a•4x)+f(2x+1)>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案