若曲線y=ax2-lnx在點(diǎn)(1,a)處的切線平行于x軸,則a=   
【答案】分析:先求出函數(shù)的導(dǎo)數(shù),再由題意知在1處的導(dǎo)數(shù)值為0,列出方程求出k的值.
解答:解:由題意得
∵在點(diǎn)(1,a)處的切線平行于x軸,
∴2a-1=0,得a=
故答案為:
點(diǎn)評(píng):本題考查了函數(shù)導(dǎo)數(shù)的幾何意義應(yīng)用,難度不大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,f(x)=ax2-2x+1+ln(x+1),l是曲線y=f(x)在點(diǎn)P(0,f(0))處的切線.
(1)求切線l的方程;
(2)若切線l與曲線y=f(x)有且只有一個(gè)公共點(diǎn),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•東城區(qū)一模)已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點(diǎn)x=1處的切線l不過第四象限且斜率為3,又坐標(biāo)原點(diǎn)到切線l的距離為
10
10
,若x=
2
3
時(shí),y=f(x)有極值.
(1)求a,b,c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x3+ax2+bx+3)•ecx,其中a、b、c∈R.
(1)當(dāng)c=1時(shí),若x=0和x=1都是f(x)的極值點(diǎn),試求f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)c=1時(shí),若3a+2b+7=0,且x=1不是f(x)的極值點(diǎn),求出a和b的值;
(3)當(dāng)c=0且a2+b=10時(shí),設(shè)函數(shù)h(x)=f(x)-3在點(diǎn)M(1,h(1))處的切線為l,若l在點(diǎn)M處穿過函數(shù)h(x)的圖象(即動(dòng)點(diǎn)在點(diǎn)M附近沿曲線y=h(x)運(yùn)動(dòng),經(jīng)過點(diǎn)M時(shí),從l的一側(cè)進(jìn)入另一側(cè)),求函數(shù)y=h(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點(diǎn)P(0,f(0))處的切線是l:2x-y+3=0.
(Ⅰ)求b,c的值;
(Ⅱ)若f(x)在(0,+∞)上單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:北京市豐臺(tái)區(qū)2012屆高三下學(xué)期統(tǒng)一練習(xí)(一)數(shù)學(xué)文科試題 題型:044

已知函數(shù)以f(x)=x3-ax2+1(a∈R).

(Ⅰ)若曲線y=f(x)在(1,f(1))處的切線與直線x+y+l=0平行,求a的值;

(Ⅱ)若a>0,函數(shù)y=f(x)在區(qū)間(a,a2-3)上存在極值,求a的取值范圍;

(Ⅲ)若a>2,求證:函數(shù)y=f(x)在(0,2)上恰有一個(gè)零點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案